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Polymer Diffusion in Quenched Disorder: 
A Renormalization Group Approach 
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We study the diffusion of polymers through quenched short-range correlated 
random media by renormalization group (RG) methods, which allow us to 
derive universal predictions in the limit of long chains and weak disorder. We 
take local quenched random potentials with second moment v and the excluded- 
volume interaction u of the chain segments into account. We show that our 
model contains the relevant features of polymer diffusion in random media in 
the RG sense if we focus on the local entropic effects rather than on the 
topological constraints of a quenched random medium. The dynamic generating 
functional and the general structure of its perturbation expansion in u and v are 
derived. The distribution functions for the center-of-mass motion and the inter- 
nal modes of one chain and for the correlation of the center of mass motions 
of two chains are calculated to one-loop order. The results allow for sufficient 
cross-checks to have trust in the one-loop renormalizability of the model. The 
general structure as well as the one-loop results of the integrated RG flow of the 
parameters are discussed. Universal results can be found for the effective static 
interaction w : = u - o > / 0  and for small effective disorder coupling /~(l) on the 
intermediate length scale /. As a first physical, prediction from our analysis, we 
determine the general nonlinear scaling form of the chain diffusion constant and 
evaluate it explicitly as D oc N(I) - I  9(ff(I) N(I) ~) for 6(/) <~ 1. 

KEY WORDS: Polymer dynamics; polymer diffusion; quenched random 
media; renormalizability; universality. 

1. INTRODUCTION 

How does a polymer diffuse through a quenched random medium? Is this 
question well posed, i.e., is there a universal answer independent of details? 
Or can we identify a class of models which have a universal behavior? Can 
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we especially use renormalization group (RG) methods in some parameter 
range to settle these questions? These problems will be addressed in the 
present paper with a special emphasis on a systematic RG treatment. 

Consider a polymer as a very long linear object of arbitrary chemical 
microstructure which is stiff only up to some microscopic length scale I and 
which is embedded in some homogeneous solvent. Let the system be in 
thermal equilibrium. If the monomers do not interact, the central limit 
theorem yields both the radius of gyration and the root mean square end 
to end distance scaling like ~ with chain length N, independent of the 
precise microstructure. 

Let now the monomers repel each other on short ranges. Then the 
central limit theorem is generalized to a universal scaling law. Both radii 
scale like N v with v = 0.588 in space dimension d =  3, again independent of 
the precise microstructure. (For an attractive interaction, there is no 
universality.) This and other universal laws are verified both in experiments 
and in simulations. They can be derived by transforming polymer statics 
into a ~4 field theory, which is known to be renormalizable to all orders of 
perturbation theory. (We will comment on some aspects of this connection 
in the body of the paper, as far as this is needed for comparison with our 
dynamic calculation. For a review on polymer statics see ref. 1.) 

Let us briefly recall the idea of renormalizability: It implies that, of the 
many parameters describing the microscopic behavior of the model, only 
very few determine the behavior on large length scales. The basic step of a 
RG treatment is to rewrite the model on a different microscopic length 
scale, while physical observables are kept invariant. This can be done by 
integrating out the microscopic degrees of freedom up to some fixed length 
scale, which then becomes the new microscopic scale. The change of the 
effective parameters under this procedure is called their RG flow. The 
parameters of a renormalizable problem under RG flow approach a low- 
dimensional parameter submanifold .///. Identities derived in this dis- 
tinguished manifold J# are universal in the sense that every microscopic 
system within a certain parameter range on sufficiently large length scales 
first approaches the manifold Jr and then obeys the universal identities on 
~r162 A point on Jr where the system parameters approximately reach ~ ' ,  
is related to the microscopic physical system by some nonuniversal con- 
stants. In the case of polymer statics in d =  3, J /  is spanned by only two 
parameters, namely the chain length and the two-segment interaction. 

Given the fact that universality was proven for polymer statics, it is 
natural to ask about universality in more complicated polymer problems 
such as polymer diffusion in random media. 

Consider as a next step the equilibrium properties of polymers in 
quenched random media. This problem has been discussed extensively and 
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controversially in the literature. These controversies arose in part from 
comparing different expectation values or different polymer models under 
the general question: What are the equilibrium properties of a polymer in 
a random medium? But without universality, different models give different 
answers. Exactly one universal regime could be identified so far, ~2~ namely 
that of vanishing segment concentration and of the effective segment- 
segment interaction being still repulsive after ensemble averaging. This 
universal regime is trivial in the sense that its mathematical structure is 
identical with that of polymer statics without disorder. That means it also 
can be transformed into a ~b4-theory, it is renormalizable to all orders, etc. 
It is related to the theory without random potentials by a mere shift of the 
strength of the two-segment interaction. 

Now we aim beyond simple equilibrium properties and investigate the 
problem: How does a polymer diffuse through a quenched random 
medium? Can we find renormalizability and thus universality in some 
parameter range? 

How should a realistic model be set up? The simplest approach to 
polymer dynamics is a Langevin equation, which describes the displace- 
ments of the individual segments due to the sum of local random thermal 
forces and a deterministic force derived from the equilibrium Hamiltonian. 
Neglecting furthermore the self-repulsion of the chain, this model is known 
as the Rouse model. It is exactly solvable. Inclusion of the excluded-volume 
interaction makes the problem only perturbatively treatable. It is renor- 
malizable up to two-loop order. ~3~ Such a model, however, neglects the 
hydrodynamic modes of the solvent: The displacement of a segment should 
also cause a displacement of the surrounding solvent and thus result in a 
hydrodynamic flow field. The diffusion constant or viscosity of a model 
including hydrodynamics consistently could be renormalized only to one- 
loop order ~4'5} up to now. 

For none of these dynamic models has a transformation to a renor- 
realizable dynamic field theory been found so far, and we will point out 
some of the related difficulties in the paper at appropriate places. Therefore 
no transformation offers a short-cut, but the full dynamics has to be 
investigated perturbatively. 

At first sight polymer diffusion in a random medium appears to pose 
even a harder problem than polymer diffusion in a pure solvent. For- 
tunately the random medium eases the problem in one respect: It should 
screen the hydrodynamic flow field. We conclude this in analogy to the 
hydrodynamic screening in a semidilute or dense solution, where the other 
polymer chains play the role of a random medium (ref. 6, p. 172). 

Now the random medium should be specified. A truly quenched dis- 
order would consist, e.g., of a gel or any other packing of a diffraction 
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column. One also could think of a semidilute or dense solution with the 
other polymers being treated as a random background. If the relaxation 
times of this "background" due to entanglements are sufficiently slow, one 
could consider this situation as "relatively quenched." In all these cases fre- 
quently a reptation model is used, which treats the polymer diffusion as a 
Langevin dynamics hindered by topological constraints. If  the random 
medium forms connected structures of fairly uniform density in three- 
dimensional space, it can be mapped to an essentially regular array of 
topological obstacles. Reptation then describes the snakelike motion of the 
polymer through the array. As a result the diffusion constant is expected to 
scale not as N-1  as in a Rouse model, but as N -2. 

Consider in contrast a very irregular distribution of the medium. We 
then might have wide holes and narrow passages, which act as entropic 
traps or barriers. ~ Coarse graining a bit, an entropic trap can be con- 
sidered as an attractive potential. Also, the medium, being locally attractive 
or repulsive, can contribute to an effectively fluctuating local binding 
energy. This suggests that one considers the effect of a local random poten- 
tial. One should expect that such a potential distribution should slow the 
polymer down more than N -2, since with growing chain length it will stay 
longer and longer in favorable energy valleys. Machta ~8~ has analyzed such 
a model and finds the diffusion constant in his model to be proportional 
to N-1  e x p ( -  cvoN~), with Oo the second moment of the potential distribu- 
tion and ~ = 2 -  dv the "specific heat" exponent of critical phenomena. If a 
prediction of this type can be verified, the random potential for sufficiently 
long polymers clearly dominates over the topological constraints, and it is 
justified to neglect the latter. It must be noted that no simple scaling ansatz 
can yield such an N dependence of the diffusion constant. Scaling would 
always predict a power law D oc N - " .  (Our RG analysis in contrast will 
not give a simple scaling result.) 

Experiments seem to be in favor of reptation for melts, but for 
polymer solutions seem to show a stronger decrease of the diffusion con- 
stant, as discussed in the review of Lodge etal. 19) on the experimental 
verification of the reptation picture. Melts or solutions map clearly to 
either a rather regular or a more random spacing of obstacles. Solutions 
therefore seem to require a proper treatment of the entropic traps. Both 
systems of course have no truly quenched disorder. One should expect the 
diffusion constant for such annealed disorder to give an upper bound to 
that in quenched disorder. 

Having motivated the RG investigation of polymer diffusion in local 
random potentials so far, we note that surprisingly little analytical work 
can be found on such models. 

Machta derives his prediction for the diffusion constant in a random 



Polymer Diffusion in Quenched Disorder 187 

potential by coarse graining the system up to the polymer size, followed by 
a saddle point analysis. Especially the coarse graining needs reconsidera- 
tion. Not only the whole chain, but also arbitrary parts of it can be trapped 
in an entropic trap. This effect can be treated systematically in a RG 
approach. 

Besides Machta's, the early work of Martinez-Mekler and Moore ~~ 
should be cited. They investigated exactly the same model as considered 
here. For the determination of the RG flow of the disorder coupling v they 
used a replica approach, but did not pursue the investigation further after 
not having found a stable fixed point of this flow. However, a stable fixed 
point is not an indispensable prerequisite for the application of the RG. 
Finding back the replica result in our fully dynamical calculation, we still 
can exploit the fact, that the system is driven toward the distinguished 
manifold ~g and evaluate the RG flow in J / .  Functional relations of the 
form of "nonlinear" scaling laws still hold and can be evaluated pertur- 
batively for small renormalized coupling. We will see that Machta's result 
reproduces the lowest order of the functional form found by our methods. 

But before calculating the diffusion constant, we will investigate the 
theory thoroughly with a special emphasis on renormalizability. Our aim is 
a systematic treatment of a Langevin polymer dynamics with excluded- 
volume interaction and with a quenched short ranged random potential by 
methods of dynamic functionals and RG analysis. A systematic approach 
is all the more desirable, since no model for polymer dynamics so far could 
be proven to be renormalizable to all orders of perturbation theory. The 
renormalizability assumption therefore needs to undergo a broad test. At 
the same time the dynamic calculation also allows us to test the replica 
approach. 

More precisely, we will proceed in the following steps: In Section 2 we 
recall some basics on polymer statics and its relation to a renormalizable 
~b4-theory, we briefly discuss polymer statics with disorder, and we intro- 
duce our dynamic model. 

Section 3 is devoted to the systematic setup of the tool kit of the further 
calculation: the dynamic generating functional is derived, the free theory is 
diagonalized, and the general structure of the perturbation expansion is 
provided. Finall3~ the continuous chain limit as a tool for facilitating the 
e-expansion (e = 4 -  d) and the discussion of canonical dimensions is per- 
formed and the relevance or irrelevance of various parameters in the RG 
sense is discussed. Though a dynamic functional approach was used earlier 
for polymer dynamics] 5) there is no literature we could refer to for the 
setup of the calculation as needed in later sections. 

In Sections 4-6 three different distribution functions are discussed and 
analyzed. The center-of-mass motion and the internal modes are motivated 
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as quantities of physical interest, while the center-of-mass correlation of 
two chains plays a central role in the RG analysis. The physical properties 
of all three distribution functions are discussed and they are analyzed to 
one-loop order with technical details banned to some appendices. Our 
results allow for sufficient cross-checks to prove the one-loop renormal- 
izability of the model not strictly, but convincingly. (A strict proof would 
require an abstract analysis of any generating functional, while we in fact 
have analyzed functionals with specific generating fields, which we believe 
to be representative.) 

This allows us to analyze the RG flow of the parameters in Section 7. 
Both the one-loop results and the general structure of a renormalizable 
theory are discussed. The RG flow of the parameters is integrated. We 
finish by calculating the diffusion constant as the long-time asymptote of 
the center-of-mass motion. Preliminary results on both the long- as well as 
the short-time asymptotics of the center of mass motion can be found in 
ref. 11. The detailed analysis of the short-time asymptotics in comparison 
with Monte Carlo simulations is given in a forthcoming paper. ~12~ 

2. DEFINIT ION A N D  D ISCUSSION OF THE M O D E L  

In the present section we recall some features of polymer statics 
without and with disorder which are basic for the following analysis, 
including the transformation to ~b4-theory. We also introduce the dynamic 
model. 

2.1. A Reminder on Polymer Statics and Renormalizabi l i ty 

Consider polymers consisting of N>> 1 monomers in the dilute limit, 
i.e., at such a dilution that they can be treated as isolated chains floating 
in the solvent. For dimensions 2 < d < 4 ,  temperature T>~ O, and on scales 
much larger than the monomer size, there are only two features of the 
model relevant for the calculation of properties on large scales, namely the 
linear chain structure with given chain length N and an effective short- 
ranged repulsive interaction u between the monomers. It is most convenient 
for calculational purposes to represent these relevant features by the 
Boltzmann weight exp ( -~ r  derived from the following Hamiltonian: 

J ~ 0 [ r ] + J ~ [ r ] =  ~ (r ' -r i -~)2+ul  a ~. ~a(r,--rj), u~>0 (2.1) 
4l*- i = 2  1 <~i<j~N 

Here and in the rest of the paper the following notation is chosen: r0, and 
Po with/z = 1 ..... d denote a component of the d-dimensional vectors ri and 
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p, respectively; r denotes the (d x N)-dimensional vector of a polymer con- 
figuration. We have 

r i=(ro , ) ,= l . . . . . aER a, p=(p , , ) t ,= l . . . . . a6R  a 

r = ( r i ) i =  ,,..., N ~ R a •  u 

(2.2) 

i = 1,..., N defines the intrinsic metric of the chain. 
That the ansatz (2.1) for u = 0 contains the relevant part of the chain 

structure can be seen easily: The distance distribution of the segments on 
a slightly coarse-grained level (counting, e.g., only every twentieth 
monomer) should be approximately Gaussian. But a Gaussian distribution 
is exactly the result of exponentiating 3r r ]. Also, the 0-function in ~ [ r ]  
represents the relevant part of the short-ranged interaction. Accordingly, 
writing it into the exponential is a symbolic notation. The 0-function there- 
fore should be read as either a smoothened exponentially decaying function 
or as exp[-ulaOa(r) ]  = 1 -u laOa( r )  in a virial expansion. 

In the continuous chain limit l ~ 0, N --. ~ ,  S = NI z fixed, the model 
(2.1) becomes identical with the Edwards-Hamiltonian. One then needs to 
pay additional attention to keeping Yt~,,[r] well defined. 

The model (2.1) is already on the critical manifold as defined in the 
introduction, because the length scale l of the description is already chosen 
so large, that irrelevant contributions like the stiffness on short scales or a 
three-segment interaction are eliminated. The length scale can be increased 
further by integration over the degrees of freedom up to the scale l'. The 
new model is again characterized by only the two parameters N and u, now 
adjusted to the new length scale l'. Starting from any u > 0, u asymptoti- 
cally reaches a stable fixed point for sufficiently large l'. At a fixed point of 
u linear scaling laws can be derived, such as the radius of gyration scaling 
like N ~, etc. 

Clearly the very structure of renormalization implies that the change 
of the model parameters under a change of l must be independent of the 
physical quantity considered. The joint structure of (1) the parameters 
absorbing the same microstructure under RG flow in all expectation 
values, and (2) the models reaching a low-dimensional critical manifold 
under RG flow, is called renormalizability. Note that the existence of a 
fixed point within the critical manifold is not required. 

That the equilibrium properties of effectively repulsive polymers in 
dilute solution are renormalizable to all orders of perturbation theory and 
therefore universal on large length scales can be proven by transforming 
the model (2.1) to field theory. A Laplace transformation over the chain 
length N maps the Green's function of the model (2.1) for a single chain to 



190 Ebert 

the Green's function of a ~b 4 theory. The combinatorial prefactors of the 
diagrammatical expansion of the ~b4-theory have to be evaluated with the 
number of spin components n formally equal to 0. The ~b4-theory has been 
proven to be renormalizable to all orders of perturbation theory. The 
relevant parameters of a ~b4-theory transform back into polymer language 
into exactly the model (2.1). The coupling u in (2.1) is identical with the 
coupling u of ~b4-theory. The mass m of ~b4-theory is the conjugate quantity 
to the chain length N under the Laplace transformation. 

Knowing this connection, one also can work directly in polymer 
language. For polymer statics this is a matter of convenience, while for 
polymer dynamics this will be the only choice, since there we know of no 
renormalizable dynamical field theory to which we could transform. 

2.2. Some Features of Polymer Statics in Quenched Disorder 

We now incorporate quenched random potentials into this standard 
model. Each segment tests the local potential, and the chain configurations 
get an additional statistical weight according to the total potential exerted 
on the chain. Mathematically this is done by adding to the Hamiltonian 
the term 

N 

~, [ r ,  V(r)] = Y' V(r,) (2.3) 
i = l  

We assume a local Gaussian distribution of the potentials 

V2(r)] 
~,[ V] =,,V exp - f  ddr 2rid ] (2.4) 

and we will prove in Section 3.4 that (2.4) is the relevant contribution of 
any distribution of finite, short-ranged correlated potentials (of course only 
if the distribution is translationally invariant). 

(Note in comparison that for a so-called directed polymer in quenched 
disorder the excluded-volume interaction term 3r is missing and the 
random potential is independent for each segment, J~,[r, V ( r ) ] d i r . p o l .  = 

~,i V(ri, i), V(r,-, i) V(rj,j) oc 6u6(ri-- rj). ) 
We will now first discuss the static properties of polymers with the 

Boltzmannian weight 

~v[ r ]  =,A: e x p { - W o [ r ] -  3r - 3~,,[r, V(r)]} (2.5) 

since any polymer dynamics in quenched random potentials should contain 
this static model as a closed substructure. We summarize in the remainder 
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of the section our earlier discussion of quenched static expectation values 
in ref. 11 and especially ref. 2 (which see for further references). 

One has to distinguish quenched or annealed averages. Annealed 
averages correspond to fluctuating potentials. The averaging over disorder 
then is done together with averaging over the chain configurations. This 
yields simple Gaussian integrals, which can be fully evaluated. As a result 
it is found that annealed averages are equivalent to the theory without ran- 
dom potentials with only the couplings replaced such as 

u --* w : = u -  v (2.6) 

In other words: The theory without random potentials (2.1) has the two 
parameters (u, N)I on the scale l and the theory with fluctuating random 
potentials has the two parameters (w, N)t. The shift of the coupling can be 
interpreted such that averaging over the potentials generates an additional 
attractive interaction. Therefore the chains collapse earlier, resp. the O 
temperature is higher due to the fluctuating potentials. (t3) The mathe- 
matical structure above and at the collapse, however, is identical. Below 
the O-temperature for u < 0 as well as for w < 0 the connection to field 
theory breaks down and the behavior becomes nonuniversal. 

Quenched averages apply to frozen-in potentials as will be dealt with 
in the present paper. In this case it is not the partition function that has to 
be averaged, but the free energy. Usually this average is difficult to treat. 
In the present case we observe, however, that quenched averages at zero 
segment density are identical with annealed averages, because the partition 
sum in the denominator is self-averaging. This property is specific to 
quenched potential averaging for geometric objects at concentration zero 
and differs from the behavior of field theory in random potentials, resp. 
with fluctuating masses, where the free energy can be self averaging, but 
not the partition function. Self-averaging of the partition function for lattice 
polymer models has long been known in the Monte Carlo literature. A 
rigorous proof for certain lattice models can be found in ref. 8, though 
there erroneously attributed to Harris. t14) The extension to general models 
can be found in ref. 2. 

We conclude that for static expectation values of a finite number of 
chains of large, btlt finite length in an infinite embedding volume, quenched 
and annealed averages coincide and differ from the theory without poten- 
tials only by the shifted couplings (2.6). Especially u and v do not play any 
distinct role, but add up to only one coupling w. (The same is true also 
for all higher order couplings, resp. higher order moments of disorder, (~3) 
which are irrelevant, however.) In dynamics, in contrast, the coupling 
v will play a separate role beside the static coupling w, as will be shown 
below. 
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2.3. Introduction of the Dynamic Model 

We first extend the static model of Eqs. (2.1) and (2.3) by another 
contribution to the Hamiltonian: 

R~m[ r ] 
Jgc[r] - 2~*- (2.7) 

It harmonically binds the center of mass of a polymer 

1 u 
Rcm[r 3 = ~ y ' . =  r i (2.8) 

to the origin. ~d can be interpreted as proportional to the available part of 
embedding space. ~ is always assumed to be much larger than any other 
length scale. 

Z~[r]  in (2.7) is introduced mainly for technical purposes, since it will 
regularize the center-of-mass motion in Section 3.2. It is also useful for 
discussing the zero-segment-density limit of the last section quantitatively 
as well as other useful limits of the theory/2~ 

Accordingly the total Hamiltonian to be considered below is 

~ [ r ,  V]~= Jgo[r] + ~ , [ r ]  + J(,[r, V(r)] + ~ [ r ]  (2.9) 

with Eqs. (2.1), (2.3), (2.4), and (2.7). Note that this Hamiltonian is dimen- 
sionless when rt, I and ~ are chosen of identical dimension and u, V(r), and 
v are dimensionless. 

Now a Langevin dynamics 

0 ( 0~(r V]~+f0,(t)/ (2.10) 
c3t rO'( t) = y Oro, 

is introduced. Equation (2.10) can be understood as an overdamped equa- 
tion of motion: The displacement of a segment is proportional to the sum 
of a deterministic plus a thermally fluctuating force. 

Had we additionally introduced a mass term with a second time 
derivative of r0,(t) on the left-hand side of (2.1), we would have found that 
by power counting arguments similar to those discussed in Section 3.4, this 
term is irrelevant in the RG sense on large scales, as long as the term with 
the first time derivative is present. 

Within the approach of Eq. (2.10) it is consistent to assume the thermal 
forcesf0,(t) to be short-range correlated in the intrinsic metric i of the chain 
and in time t and independent in the Cartesian components #. The 
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relevant contribution of such a distribution of random forces is represented 
by a Gaussian ansatz 

~ f [ f ] = M  r e x p  - ~  dt f~,(t 
i = 1  I t = l  

(2.11) 

as will be shown in Section 3.4. The variance of the distribution (2.11) is 
determined by the dynamical equation (2.10) and its connection to the 
Boltzmannian equilibrium ensemble e x p ( - J f [ r ( t ) ,  V]r (2.9), through 
the Einstein relation. Then 2dy is the diffusion constant of an independent 
segment. For Jt~ V]r  :~0[r(t)] the model reduces to the Rouse 
model of polymer dynamics. 

As already discussed in the introduction, a dynamic model without 
hydrodynamic interaction frequently is considered as only a first step 
towards a more realistic dynamics, which also should take the dynamics 
of the solvent into account. For semidilute solutions, on the other hand, 
it has been argued that hydrodynamic interactions are screened by the 
interpenetrating segments of other chains, such that a model without 
hydrodynamic interactions then actually is consistent with experiments, t6~ 
Similarly we can argue for the random potentials: If we assume that the 
flow of the solvent due to the displacements of the chain segments in a 
random potential background adds up to some random force, we are back 
to the model characterized by (2.10) and (2.11). 

As far as the dynamics of the polymer is concerned, our model is on 
a similar footing as reptation theories, which also are based on a Langevin 
description of the segment displacements and neglect hydrodynamic inter- 
actions. Reptation approaches and our local random potential model differ 
in how the random medium is modeled. Reptation models focus on the 
topological constraints due to the random medium, which are assumed to 
confine the polymer to some average tube. Our model, in contrast, concen- 
trates on the local energetic and entropic effects due to the medium as 
already discussed in the introduction. 

Within the class of local random potential models no further 
approximation schemes are required, since our model can be dealt with by 
renormalization group methods. It represents the universal content of any 
local random potential theory on scales much larger than the microscopic 
length scale. 

3. THE  D Y N A M I C  G E N E R A T I N G  F U N C T I O N A L  

So far we have discussed the motivation for treating exactly this 
model. In the present section we derive the tools of the analysis. 
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We analyze the model by renormalization group (RG) methods, while 
it is actually not clear whether the model is renormalizable. The calculation 
therefore serves two purposes: for the verification of the renormalizability 
hypothesis to one-loop order, and for the derivation of quantitative results. 

Having the successful extension of static ~ba-theory to various dynami- 
cal models in mind, this procedure will be imitated here for polymer 
dynamics. The method of dynamic generating functionals will be used in 
the form derived by Bausch e t a l .  (tS~ It was used earlier for polymer 
dynamics, (5~ but the precise tools as represented in this section and needed 
in the following ones have not been available so far. 

The program of the section is in close correspondence to ref. 15: First 
a dynamic generating functional is derived from the Langevin equation and 
the distribution of thermal random forces. Then the free theory (u = 0 = v) 
is exactly diagonalized. It is also known as the Rouse theory of polymer 
dynamics. Then a perturbation theory in the couplings is set up about this 
free theory. Finally the continuous chain limit and the relevance of the 
parameters in the RG sense are discussed and a short reminder on the 
e-expansion technique is included. 

This establishes the tools for analyzing various correlation functions in 
the forthcoming sections, which can be calculated by fixing the external 
generating fields appropriately. 

3.1. From the Langevin Equation to the 
Generating Functional 

The notation of the Langevin equation (2.10) can be made more com- 
pact by writing r for the (dxN)-dimensional vector of a polymer con- 
figuration (2.2), V, for the corresponding (dx  N)-dimensional derivative, 
and f for the random forces. 

Just as in a dynamical field theory, we discretize the temporal 
derivative into infinitesimal time steps ~ and find from (2.10) 

r ( t+  r) --r( t)  
- -  - -0CVr~[r( t  +z'), V]~ 

yr 

--(1 --~) Vr3~[r(t), VIe + f(t) (3.1) 

As usual we are free to choose cx deliberately within the interval [ 0, 1 ]. The 
value ~ =  1/2 corresponds to the usual differential approach or the 
Stratonovich calculus, while a = 0 corresponds to the Ito calculus. Physical 
observables are known to be independent of the choice of a, if the calcula- 
tion is done consistently with one value of ~. 
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The Langevin equation (3.1) together with the distribution of random 
forces (2.11) determine the transition probability ~( r ( t  + z) lr(t))v. r that a 
given polymer configuration r(t) evolves into a configuration r(t + 3) within 
the time ~ in a given potential field V(r) and volume ~d. To derive a formal 
expression for ~ ,  (2.11 ) is first discretized in infinitesimal time steps r and 
linearized by introducing the additional Gaussian variable ~: 

~f[f(/)]  daNf(t) 

= dauf(t) (~r/4n) aN/2 exp[ - ) , r f  2(t)/4] 

daNf(t) f daNf(t) (Tr/2n) aN e --)'r[r2(t)--ir(t)f{t)] (3.2) 

Then f(r is substituted by r ( t + r )  for fixed r(t) by means of Eq. (3.1). It 
is straightforward to determine the Jacobi determinant of the substitution 
as 

Ofo,(t ) 3U~uv+0 c 029r176 V]~ 
Or~(t~'c) = yr Oro,(t+z) Orj~(t+r) 

= (yr)-aN [exp{~yr V ~ [ r ( t  + r), V]r + (_0(r2)] (3.3) 

The choice of 0~ = 0 reduces the determinant to a trivial factor of (yr) -aN. 
In the sequel ~ = 0 or the Ito calculus will be used. 

The probability that a given configuration r(t) transforms into another 
configuration r(t + r) within time r thus is given as 

~(r(t  + r)[r(t))v.r da%(t + ~) 

daNr(t) e-~,r [~ol- i~(o ~(r .  t),:,:l (3.4) =d'mr(t+ ~) f (2-~-~ 

with 

r(t+r)-r(t )  
A~(r, t)v.r . -  + V,,~j~f'[r(t), V]r (3.5) 

?z 

The subscript V, ~ is used to indicate that the transition is calculated within 
a fixed potential configuration F(r) and embedding volume ~a. 

The temporal evolution within each potential configuration is 
Markovian. The transition probability within the finite time T =  Mr there- 
fore can be derived as 

822/82/I-2-13 
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M - - I  

~ ( r ( t +  T)lr(t))v.~=~ ]-I ddUr(t + mr) 
m = l  

M 

x I-] ~(r(t+m~)lr(t+(m-1)r))v., (3.6) 
m = l  

or in the continuous time limit as 

~(r( t  + T) I r(t)) v. + 

= ~'<'+ ~ d[r, ~] 
~r(t) 

?dr (0r(z) + x e x p ( - f ,  '+T [ f z ( r ) - i ' ( r ) \ T - ~ - - V ,  J t~ (3.7) 

if expressions are understood in the ~ = 0  discretization. For ~ = 0  the 
normalization of the integration measure d[r, f]  consists of powers of 
(2~) -I  only. The probabilities (3.4)-(3.7) are then properly normalized. 

One now couples external fields linearly to the fluctuating variables 
and averages over the fluctuations. The result is called the dynamical 
generating functional and is written as 

.+{-I+..-i+.+:.+. 
=lexp(ifdt(hr+h~)(t)}) (3.8) 

The angular brackets denote the average over the thermal forces, resp. over 
the variables r and f. The lower index 1 in ~el[h, K] denotes a functional 
for one chain. We later will also deal with a functional for two chains. The 
external fields h and K can be chosen freely according to the problem. Three 
different choices will generate three different correlation functions, which 
will be discussed in the next sections. 

We now set up the general framework of perturbation theory. This 
first of all requires us to analyze the Langevin kernel 

We find 

0r(t) + V,~[r(t), V]+) 
70t 

0~o[r] 2ro,--ri_l~,--ri+l~, 
Or~ 212 (3.9) 
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and 

if we formally use 

o e,] Rom,,, 1 (-. 
Or,, - N~2 = N ~ 2  z., rj,, j=l 

(3.10) 

with 

with the Fourier transformation 

VV(p) :=f dareiprV(r), V(r)=~pe-iprVV(p), 

The complete V-dependent expression in the exponent of (3.8) is 

d"p 
Ip:=f (2n)a (3.14} 

- I  dt (-i~: T V,Yg~[r, V]) 

=7 f dt ~ ~p (p?,(t))e-ipr'('}VF(p)=:-- L VV(p)CV(--p) 
i= l  

N 
CV(--P) = --I 7 dt ~ (p?,-(t)) e-W~"'} = _CV,(p)  

i=1 

(3.15) 

(3.16) 

r0=r l  and rN+l = r u  (3.11) 

The contributions (3.9), (3.10), and 0,r are linear in r and can be treated 
exactly. They constitute the free diagonalizable theory. This theory up to 
the finite-size term (3.10) is the so-called Rouse theory of polymer 
dynamics. 

The other two terms of the Hamiltonian will be treated perturbatively. 
The excluded-volume interaction leads to 

0o~,,[ r] ~ f dap 
Z J ( - '2-~ ]d eiP{ rJ- rk) Or O, or O, uld 

l < < . j < k < ~ N  ", P 

N 

=ul a ~" ~ ipi, e ip(ri-n') (3.12) 
k I k # t  P 

The random potential contribution is 

0o~v[r , V]= 0 ~ Ipe_iprJVF(p)= --Ip ipl'e-ipr'VV(p) (3.13) 
Oril, Orii~ j = l 
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Averaging Y't[h, K] with the potential distribution (2.4), we find 

f d[ l/-J ~,[ ~ exp {-;p Vr(p) Cr(-P)} 

=exp{�89 CF(p) CF(--P)} 

=exp {-�89 fp lC~(p)12} (3.17) 

Obviously, quenched averaging can be performed here without problems, 
as is characteristic for dynamical functionals. 

Note that (3.17) is bounded from above for any positive second 
moment o, i.e., in the physical parameter regime. This is in contrast to the 
disorder average of the static weight (2.5), which is not bounded for 
W=U--o<O. 

The potential averaged generating functional now can be written as 

(3.18) 

The free action is 

dt~(  ( 2r , . - r i_l  - r i + l  + Remit] x~x~ 
So=~ -= y?~--i?, fi+7 2l 2 y ~ j j ( t )  (3.19) 

and the interactions take the form 

N 
~[ll)'~-fpUldfy dl E (P ?i(l))eip(ri-rjRt) 

i,j= I,jv~i 
N 

+�89 y2dtdt' ~. (p?i(t))(p?j(t'))e ip'r~m-rj't'') (3.20) 
i,j=l 

In the last formula the very different character of the two interactions should 
be noted. This is again in contrast to polymer statics: In Section 2.2 we 
recalled that polymer statics in the appropriate limit has only one coupling 
w = u -  v, while here the two couplings appear with a clearly distinguished 
temporal dependence. This can be understood on physical grounds: 
Segments avoid each other when they are at the same place at the same time. 
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A time-independent local potential, however, becomes effective whenever a 
segment comes to the site of the potential. Averaging over the potentials 
thus generates an effective segment-segment interaction, which is local in 
space, but nonlocal in time. 

3.2. Diagonalizing the Free Theory 

The free part So of the generating functional (3.18) can be 
diagonalized by introducing the standard Rouse coordinates. We define the 
orthogonal transformation 

N N 

Sk~(t)= Y'. Okiris,(t), gk~,(t)= ~ Ok~F~,(t) (3.21) 
i = l  i = 1  

with the transformation matrix 

Thus 

Oki=l(2)U2CO s 

N - - I  

Z 
k = 0  

for k = 0  

nk 2N J for k = l  ..... N - 1  

(3.22) 

N 

OkiOkj=6iy, ~ OkiOti=6kl (3.23) 
i = l  

N - - I  

ro,(t)= ~,, Okisej,(t), 
k = 0  

etc. 

Obviously the eigenmodes Sk emerge from a Fourier analysis with respect 
to the intrinsic metric i and with the boundary condition (3.11 ). The k = 0 
mode is the center-of-mass mode with 

s0(t)= ~ &ri(t)=x//-NRcm[r(t)] 
,=1 x /N 

If we mr~hermore also transform the external fields 

(3.24) 

N N 

Hk~,(t) = ~. Okiho,(t), Hk~,(t)= ~. Okiho,(t) (3.25) 
i = l  i = l  
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the generating functional of  the free theory transforms into 

.~1 [h, K]0 = f d[s( t ) ,  ](t) 'l 

x exp  -- dt ~ y" [) 'gL-- igku(a,+O~k)Sku]( t )  
k : 0  , u : l  

t x e x p  i dt 2 ~, [HkuSk. d-fflkl~Sk1,](t ) (3.26) 
k : O  / J : l  

with the energies 

? 
090 - N ~  2 (3.27) 

2y . , nk 
r sin- ~ for k =  1,..., N (3.28) 

After a Fourier  transformation in time [ f ( t )  = j dog/2n exp( - kot) fZ(og) ], 
the generating functional (3.26) is diagonal in k, #, and co. Its exponential 
is quadratic in -F -F Sk,(Og). Thus the Gaussian integration over s~t,(a~ ) can be 
performed. A quadratic exponential m ~" sk~,(og) results. Now also e sk~,(og) can 
be integrated out. The result is 

.~,[h, G]o 
= exp -- dto ' F F _ Hk/,(W ) Hk~( - - o 9 ) ~  (3.29) 

2rr k=o .ffil \ r176176 ~176 / J  

(3.29) can be Fourier  transformed back to t-variables 

f N--I d / 
~e l [h ,K]0=exp  - � 8 9  dtdt '  ~ ~ Hki,(t) Gk(t-- t ' )Hk~,( t '  ) 

k=0 ,u=l 

xexp  - dtdt '  ~ Y'. Hk,,(t) R k ( t - - t ' ) H k ~ ( t )  
k=0 /~=1 

We introduce the Green's function 

(3.30) 

fT' Gk(t) =~ , 2 
09-+C0 k 

and the response function 

_ _  e - i t o t =  ~_~._ e--Cokltl  

(.O k 
(3.31) 

dco t" 1 
Rk(t) = --[  - -  e -i'~ = iO(t) e -~~ 

2~ co + io9 k ,I 
(3.32) 
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Obviously 

OGk(t) 
Rk( t )  = O(t) - -  (3.33) 

iy Ot 

holds. 
The 0-function is required to appear in (3.32) for fulfilling 

causality.(~5. ~6) Note, that causality here automatically holds, since the pole 
co + ico, lies in the lower half of the analytic plane. The convergence 
requirement leading to the closure of the path of integration in the upper 
or lower half of the analytic plane can be traced back to the Langevin 
kernel (0, + c  Ok) converging only for t > 0 as long as cok > 0. It is a direct 
consequence of the original Langevin equation, which relaxes in the 
positive time direction. 

Note further that we used cok > 0. This would not hold for the energy 
co o, (3.27), of the center-of-mass mode in the limit of infinite volume 
~d __, o0. We have circumvented the problem by regularizing the k = 0 mode 
via the harmonic potential (2.7). 

The connection of the Green's and response functions to expectation 
values can be established as usual by the observation that Gk(t -- t ') can be 
derived from (3.30) by 

82 H= - ~e~ [ h, K]0 (3.34) G , ( t - t ' )  iJHk~,(t) iJH~/,( t ' )  fl=o 

Applying these derivatives to the representation (3.26) of ~ [ h , K ] o ,  we 
find 

and similarily 

( Sku( t) Sk,u,( t ') ) 0 = 6kk' J,U" Gk( t -- t' ) (3.35) 

( sk~,( t) ~,,l,,( t') )o  =fikjeJt,~,Rk( t -- t ') (3.36) 

For symmetry reasons [cf. (3.8) and (3.26)], the following relation holds: 

(Sku ( t ) )o  = 0  = (~k~,(t)) 0 (3.37) 

The subscript 0 on the angular brackets as well as on the generating 
functional refers to the free theory. 

Now the value of O(0) in (3.32) is still undefined. Inserting the identity 
(3.36) into the time-discretized equations, we easily derive 

0(0) =o~=0 (3.38) 



202 Ebert 

The generating functional of the free theory can finally be written 
in terms of the segment coordinates by reversing the transformation 
(3.21)-(3.25): 

~e~[h,K]o=exp -�89 dtdt' ~ ~ ho,(t) Go.(t-t')hj~,(f ) 
i , j= l  p ~ l  

xexp - dtdt' ~ 2 h~(t)Ro(t-t')~j~,(t') (3.39) 
i , j= l  p = l  

with 
N - - I  

G,j(t)= ~ OkiOkjGk(t)=(ro,(t+to)rj~,(to))o (3.40) 
k = 0  

N - - I  

Ro.(t) = ~. Ok~OkjRk(t)=O(t) OGu(t) 
k=o iT Ot (3.41) 

The eigenmode representation of G and R is denoted by one and the 
segment representation by two subscripts. 

3.3. Perturbation Expansion in the Couplings 

Now the remaining part of the action (3.20) due to the interactions u 
and v needs to be rewritten. First the exponential function e x p ( - ~ l l )  in 
(3.18) is Taylor expanded. Then it is a standard procedure to replace ~0,(t) 
by the functional derivative 6/i6ho,(t ). The equivalence can be read directly 
from (3.18). The treatment of %,(0 is nonstandard, because it still is 
exponentiated after the Taylor expansion of exp(_~q~ll). Now the observa- 
tion is helpful that the coefficient pj, of r0,(t) appears in (3.20) in the very 
same way as an external field h0,(t). It therefore can be taken into account 
by simply adding additional internal fields, which are integrated over. For 
distinction from these additional internal fields, the external fields, which 
determine the physical properties of the generating functional, will be 
denoted by hto ) or K~o) below. The perturbation theory is then expressed as 

~[h lo , ,  ~,ol] = ~ , - - , ~ ,  
m = 0  o - ~  l 

) xexp --~ drdr' ~ ~ ho,(r)~,,,)Gu(r-r')hjl,(r')lml 
i , j = l  p = l  

~ n xexp - drdr' ~ ~ hi~(r)~,,~Ru(r-r')hjj,(r)~o~ 
i , j= l  i t=l  

(3.42) 
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with 

and 

.~ )  l~v la N f S '  
= y-" dt. dG' l(cr) 

i ~ , j ~  1 

{6(t~ - t ' )  
x u - -  [.~(i~,p~,t~)+~(j~, - p ~ , t ' ) ]  

Y 

- v  ~(i#, p . ,  t,,) ~ ( j . ,  - p , .  t ' )~ 
) 

a 
~ ( i , p , t ) - -  ~, p~ 

u~l i(~lo,(t)(o ) 
N d 

= f dr ~ ~ (p,,hju(r)(.,)) iRji(r- t) = -~( i ,  - p ,  t) 
j = l  p = l  

and the external and internal fields 

(3.43) 

(3.44) 

ho,(r)(,,)=ho,(r)(o)+ ~ P=u [6 i i ,6 ( r - t , , ) -6 j j6 ( r - t ' ) ]  (3.45) 
c t=l  

In (3.43) additionally the segment summation in the u term has been split 
into a symmetric sum of two N's. In this way the constraint i r  in (3.20) 
can be dropped, as can be verified by inserting the last identity of (3.44). 

The extension of this aparatus to problems with more than one chain 
is straightforward and summarized in Section 5 in Eqs. (5.2)-(5.5). 

3.4. The Continuous Chain Limit, the Relevance of 
Parameters, and the e-Expansion 

The continuous chain limit is the limit of vanishing segment length I. 
It represents one specific microscopic model, which should represent 
physics on large length scales just as well as the discrete model discussed 
so far, if universality holds. However, it simplifies the analysis in two ways. 
On one hand we will use a dimensional regularization scheme rather than 
a cutoff regularization in the RG analysis. An e-expansion is obscured by 
additionally keeping a microscopic length scale in the calculation. On the 
other hand in the present section we want to analyze the relevance or 
irrelevance of the parameters of the theory at the Gaussian fixed point of 
RG flow. This is done by analyzing their canonical dimensions. Such a 
dimensional analysis most naturally can be performed in the continuous 
chain limit. 
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From the analysis of the Hamiltonian (2.9) one can derive that the 
limit of 1 ~ 0 requires the introduction of the following continuous chain 
parameters: 

S = NI 2, s = il 2 

t ( s , t )=r i ( t ) ,  f sd s .  (12~= ~ . . .  (3.46) 
J0 l 2 "" + ( 9 \ $ 2  i=t 

= 2(4~z) -el2 ul a-  4 (3.47) 

l?(r) = V(r) 1-2, 0 = 2(4~z) -d/2 ol a-4 (3.48) 

The numerical factors 2(4zr)-d/2 are introduced for later convenience. Inser- 
ting the Hamiltonian into the dynamical functional (3.18), one furthermore 
has to replace 

~'(s, t) = ?,.(t) 1-2, ~ = yl 2 (3.49) 

fiIs, t )=  h/(t___) fa(s, t) = L(t)  (3.50) 
~12 ' 

Rewriting the action in the continuous chain variables, the l dependence 
vanishes completely except for the correction term (9(12/S) = (9(l/N) due to 
replacing the sum over the segments by an integral. This correction can be 
neglected for N >> 1. We find 

- f fs ds [^ (O~(s) 02~(s)~ Rem[, ] 
~ S o  m S ~ ~ ~ ~ -- f)dt ~;(s)2- i~(s) \  O~t 20s  2 S~ 2 

f t(4n)a/2ISodS,;pipeip(,(s,-~(.r 
4 2 

i(la(s) ~(s) + ~a(s) ~'(s))] (t) (3.51 

Note, however, that in this limit we will encounter the RG specific 
singularities in evaluating perturbation theory. 

We now discuss the relevance of parameters by analyzing their dimen- 
sions in the unrenormalized theory, i.e., at the trivial fixed point in the RG 
sense. The continuous chain variables in (3.51) are dimensional quantities. 
One immediately finds, that (~t) 1/4, s u2, S u2, and ( all have the dimension 
of a length. The system size ~ will always be assumed to be much larger 
than the chain size x//-S, 

~2 >> S (3.52) 
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The diffusion length (~t) ~/4 requires that we choose a special value of t, 
which can only be fixed by the external fields. It is therefore a natural 
choice to measure all length scales on the scale of ~ as the intrinsic 
parameter of the model. We then find the following dimensionless com- 
binations: 

1 = [~t  S - 2 ]  = [ ~  S -1/2]  = [r(s,~ t) S 312] 

= [P(s, t) S -'/2] = [p S I/2] 

= [a S ~/2] = [ l~(r) S] = [fi(s, t) S 7/2] = [~a(s, t) S 3/2]  (3.53) 

where e = 4 -  d. Analyzing the relevance or irrelevance of parameters at the 
Gaussian fixed point is now straight forward. A perturbation theory in the 
excluded-volume coupling ~ necessarily evolves in the dimensionless 
parameter ~S ~/2 = 2(4n) -,i/2 uN'--d/2. For 4 - - d =  e > 0 this perturbation 
obviously is relevant, since the parameter ~S ~/2 increases with chain length 
S. A similar analysis yields, that an n-segment interaction would evolve in 
powers of finS " -~  ~)a/2. For d>~ 3 only the 2-segment interaction u2 = d is 
relevant. 

We now extend our analysis to the two distribution functions ~ [  V], 
(2.4), of the quenched random potentials and oo1[f], (2.11 ), for the random 
thermal forces. We have claimed that for short-range correlated potentials 
or forces the Gaussian ansatze (2.4) and (2.11) represent the only relevant 
contributions and will prove this now. 

First we treat ~o[ V-]. The part of the action to be averaged over l~(r) 
reads 

fdar P(r) d(r) 

with 

(2(r) = - f  ~ dt fSo dS fp (p~(s, t) ) C p~r-P'''}) (3.54) 

We conclude that 

[<2(r) S -1 +a/z] = 1 (3.55) 

Averaging over arbitrary local distributions of l~(r) generates terms like 

v. f dar(~"(r) 
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for arbitrary n. Inserting (3.55), 0 ,S  " - I ' -  ~)d/,_ immediately is found to be 
dimensionless, i.e., the moment 0, has the same dimension as the coupling 
~, for given n. This also could have been concluded in a shortcut from the 
observation, that ~(r) has the same canonical dimension as ~bE(r) in a 
static ~4 theory or as the segment density p ( r , t ) = I S o d s O a ( r - t ( s , t ) ) .  
Accordingly, in d~> 3 only 01 and 02 are relevant. 01 as the first moment of 
the potential represents a global shift of the energy scale, which in expecta- 
tion values calculated in our present canonical scheme simply cancels. 
0 := 02 is the relevant disorder coupling to be kept in the sequel. 

Now we analyze ~ [ f ] .  For short-range correlated forces one can 
think of corrections in powers of f,.'-(t). A possible ansatz could be 

= e x p { - f ) J d t [ ~ i  f ~ ( t ) + c z ~ ( f / z ( t ) , 2 + f l ~ f ~ ( t ) f j ( t ) + . . . ] }  (3.56) 
�9 i i , j  

In the continuous chain limit the parameters and variables have to be 
replaced by 

fi(t) 
?(s, t ) =  12 , a = o d ' ,  f l=f l l  2 (3.57) 

The dimensional analysis then yields 

1 = [~ S -33 = [/~ S-- ' ]  (3.58) 

The corrections 0r and fl and further ones of higher powers of fiz(t) are thus 
irrelevant. 

We conclude, that the model introduced in Section 2 contains all 
parameters which are relevant in the RG sense at the Gaussian fixed point 
at dimension d~> 3. The model therefore can be characterized by the four 
relevant parameters (S, 9~, ~, 0) for ~ oo. In other words: These four 
parameters span the critical manifold in which universal laws will be 
derived. 

We finish the section with a short reminder on the e-expansion techni- 
que which will be used in the sequel. As outlined in the introduction and 
in Section 2.1, integration over the microscopic degrees of freedom up to 
some arbitrary scale IR yields effective parameters on this scale, the renor- 
malized parameters. Renormalizability implies that the microstructure up 
to l R can be completely absorbed in the renormalized parameters, and the 
theory can then be completely rephrased in terms of the renormalized 
parameters on the arbitrary scale IR in an identical functional structure. RG 
thus establishes the connection among equivalent theories defined on dif- 
ferent scales. 
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In the continuous chain limit the microscopic scale of the bare theory 
a priori is lost, but the information needed for a construction of the RG is 
saved in the divergencies of the theory as the dimension tends to the upper 
critical dimension. They take the form of poles in e = 4 -  d, which have to 
be absorbed into a multiplicative redefinition of the parameters of the 
theory: Since to lowest order the renormalized parameters are proportional 
to the bare parameters, they can be written as proportional to the bare 
parameters times Z factors, which absorb the contribution of the perturba- 
tion expansion of the integrated microscopics. For polymer statics one 
writes more precisely 

a(IR) I~'=CtZs SR(IR)=SZj- '(f f(IR)) (3.59) 

[The perturbation expansion requires a dimensionless coupling constant, u 
was introduced as dimensionless in Section 2.1. Thus ~ in (3.47) has dimen- 
sion S -~/2 and ~(lR) is the renormalized dimensionless coupling constant 
on the scale lR.] The Z factors are Taylor expandable in the couplings of 
the theory. The coefficients of the expansion depend on e. We will use the 
minimal subtraction scheme in absorbing only the principal part of a 
Laurent expansion in e in the Z factors. Then, e.g., Zs(~(lR)) reads 

Z~(~(/R)) = 1 - ~ ( / R )  + ~0(~2) (3.60) 
8 

4. THE C E N T E R - O F - M A S S  M O T I O N  

With the mathematical tools derived in the last section, we now will 
calculate physical expectation values to first nontrivial order of perturba- 
tion theory (one loop). In this section we consider the center-of-mass 
motion and in Section 6 the internal modes. Besides these quantities, 
expectation values of two or more polymers are also of physical as well as 
mathematical interest. Such a quantity will be discussed in Section 5. These 
calculations also are best for the RG analysis. 

4.1. The Tree Approximat ion 

Consider the external field 

h 0 , ( z - ) c  m ___ _ q,__z' (fi(t -- r) -- r -- r)) (4.1) 
N 
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Inserting it into (3.8), we find 

.~el [ hem, ~ '~0]  = (e-iq(r~er(,)]- r,me,(,')])) 

= f ddr e - i q r ( ~ a ( R c m [ r ( t ) ]  - Rein[r(/') ] -- r ) ~  

=: f~cm(q, t--t') (4.2) 

It yields all moments of the distance the center of mass of a polymer dif- 
fuses within time t -  t', since it is the Fourier-transformed distance distribu- 
tion function. 

The tree approximation, i.e., the contribution of the free theory, is 
found by inserting the external field into (3.39). If we further use (3.27), 
(3.31), (3.40), and the property 

N N 

~, O~i=V/~ 20oiOki=x/NJko (4.3) 
i = l  i = I  

of the orthogonal transformation matrix, we derive 

~[hcm,  ~-- 0]0 = exp( -q2~2{ 1 - e x p [ - y  [t-t'[/(N~2)]}) (4.4) 

On the other hand, by means of (3.24)-(3.26), (3.35), and (4.3) we find 

.~,[hcm,[l=-O]o=exp{-~d((Rcm[r(t)]-Rcm[r(t')])2)o } (4.5) 

The subscript 0 always refers to the free theory. 
In general the second moment can be derived from (4.2) as 

R2(/) := ((Rem[r(/-t-/o)] - R~m[r(to)])2> = - A q  Iq=o fff~m(q, t) (4.6) 

In tree approximation this second moment is obviously 

R2(t)o = 2d ~2( 1 - e-rl'l/r (4.7) 

Here we introduce the notation 

F = L =  ~ (4.8) 
N S 

y/N refers to the discrete chain and ~/S to the continuous chain limit (3.46), 
(3.49). 

In (4.4), resp. (4.7), two limits can be distinguished: 
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(i) For Fit[ ~2, RZ(t)o reads 

R2(t)o=2dFltl (l +r (4.9) 

2dFltl therefore can be identified with the free mean square diffusion 
length of the center of mass within time t. The corrections to free diffusion 
due to the finiteness of the available embedding space C a are not yet 
important. 

(ii) For Fit I >>(2, on the other hand, the temporal correlations 
decay and the center-of-mass positions equilibrate independently in space 
~d, yielding 

R2(t)0 = 2d ~2{ 1 - ~ ( e -  r I,I/r (4.10) 

The last equation allows us to discuss the question of whether the 
calculation is performed in thermal equilibrium. If no initial condition is 
specified at any finite time, the calculation implies any initial condition at 
time t = -oo .  At any finite time the system is thus in thermal equilibrium 
if all relaxation times are finite. But the largest relaxation time is that of 
the center of mass [cf. (3.27) and (3.28)]. For F It[ >> ~2, therefore, equi- 
librium is reached generally. We call this limit the ergodic limit. ('-) (Strictly 
speaking this property should even be called mixing.) 

4.2, Perturbation Theory 

Corrections to the trivial result (4.7) necessarily involve the disorder. 
Indeed, the equation of motion of the center of mass can be derived directly 
from the Langevin equation (2.10) as 

a 1 N 0 ( Rcm,p ) o--tRcm'"=U,E,N r"=r C- Or(r,) _ , = ,  I , ,  ( 4 . 1 1 /  

When summing over i, the contributions of the chain structure J6o[r] and 
the excluded volume interact ion/~,[r] ,  (2.1), exactly cancel. The center-of- 
mass motion is not influenced by the internal interactions of the chain as 
long as the external potential V(r) vanishes. This also can be proven 
diagrammatically: All contributions proportional to u" in ffcm(q,t) 
exactly vanish. Only contributions of v or mixed ones of u and v in higher 
order perturbation theory survive. The v terms are the fingerprints of the 
non-Markovity of the process after ensemble averaging: In the construction 
of the generating functional in (3.6) we have used the fact that in a single 
sample of the random potential ensemble the process is Markovian. Trans- 
lational invariance, however, is broken. So we cannot expect free diffusion 
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as in (4.9). After ensemble averaging, translational invariance is restored up 
to effects of order of ~, but now the process is non Markovian in time as 
can be seen, e.g., in (3.20) or (3.43). The center-of-mass motion probes the 
non-Markovity of the ensemble-averaged process. 

This effect will now be calculated to one-loop order. We use a mixed 
notation of segment Green's functions Go.(t), (3.40), and the center-of-mass 
mode function Go(t), (3.31), for k = 0 .  Due to (3.22), (3.40), and (4.3) they 
are related by 

Go(t) 
N 

1 ~ 1 
= ~  ~ Go(t) =~(Rcm[r ( to ) ]  Rcm[r(t + to)])o 

i ~ l  

= ~2  e - F  [t]/~ 2 (4.12) 

The last expression was derived by additional use of (3.27) and (3.41). It 
is consistent with (4.6) and (4.7). 

By means of (3.42)-(3.45) we find for t >/t' 

(r t--t ')o+t 

= 2~el[hcm, ~ ~ 0]o+ i 

= exp[ - q2~2( 1 - e -n,-,,)/r 

i , j  ~ I - -  or.~ 

{ ,  ,q , ) x -p-tRji(t2 -- t,) +--~ [iRo(t - tl) - iRo(t-- tl)] 

x { - p E i R o ( t l - t 2 )  Pq " ' t2) ] )  - - ~  [ t R o (  t - t 2)  - -  i R o (  t - -  

x exp{ -p~-Do(t I -- t2)} 

x exp f - pq t' --~- [ G o ( - t , ) - G o ( t ' - t 2 ) - G o ( t - t l ) + G o ( t - t 2 ) ] } )  

(4.13) 

The subscript 0 + 1 o n  r~cm(q , t - t ' )  denote the zeroth and first order of 
perturbation theory. In (4.13) R 0 ( 0 ) = 0  due to (3.38) has been used, as 
well as the short-hand notation 

G"(O)+G~(O)-2Gu(t)  ( ( r i ( t+ t~176176  (4.14) 
D~ := 2 = 2d 
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We now use the invariance under the exchange (i, p, t ] ) ~  (j, - p ,  tz) and 
the representation of the response functions as products of O-functions 
times derivatives of Green's functions (3.41). We also insert the explicit 
form of Go(t), (4.12). We can partially integrate over the smaller one of the 
times t~ or ta to find for t > 0  

aJcm(q, t)o+ ]/@c~(q, t)o 
t N 

= I  +vJ'p la(pq)2 fl F & e  -n'- ' ' lr  
i , j = l  

= l + f; qZ Is F dr e-n'-~)lr f s  dsidsj - 4 - -  ,7,r . (  ~-t-al,- 

X f o - ~ ( q ' - ~ ' - ( t ' r ' r ' ) \ e  1+ ~ ~) 

where 

f0  - ' (  
e--p2D#(t)  / "  dl7 t epqa ' ( t ,T , r  ' ) 

d ( t ,  r, r ' )=~2  (1 - e  -r'/r e-r"/r - n '  . . . .  're-') 

(4.15) 

In the last expression continuous chain variables are introduced. 
In the analysis of this result it is essential to know the long- as well as 

the short-time properties of the distance function Dgj(t), (4.14). They are 
derived in detail in Appendix A and here will be briefly summarized. 

As one can expect from the last expression in (4.14), Du(t) can be 
shown to be a monotonously growing function both in time It1 and in the 
continuous segment distance Isi-sj[ = l i - j]  12. For t 5 0  it is found to be 
furthermore growing monotonously in the variable Is~ + s j -  SI = 
[ i + j - N I  l'- as long as sj, sj are taken from the physical parameter space 
s~,sj~[O,S]. The form Is~+sj-SI obviously has to appear in order to 
treat both ends of the chain 0, S in a symmetrical way. Thus 

OD~ .,,.sj . . . . .  , ~> 0 

(4.16) 
ODu(t) I >~ 0 

0 I(s~ ~S/2)  + ( s j -  S/2)11 ics,-s/,-)-v-~sj-s/'-)l.l,I . . . . .  , 

For t=0 ,  on the other hand, Dr(0 ) depends only on Is~-sj[, and the well- 
known result of polymer statics 

Du(0) = Isi--sjl, D,(0) = 0 (4.17) 

is reproduced. The result (4.17) also can be derived directly from ~ff0[r], 
(2.1). 

822/82/I-2- 4 



212 Ebert 

In Appendix A a clearly distinguished short- and long-time 
asymptotics of Do.(t) is derived. The time scale discriminating between 
"short" and "long" is given by the dimensionless time 

Fl t l  9 Itl 
T =  ~ -  $2 (4.18) 

For T=O(1) ,  the mean square diffusion length 2dI'ltl of the center of 
mass is of the order of the mean square radius of gyration S. For T >  (9(1) 
the whole volume of the chain most likely has left the previously occupied 
volume in space. 

Also the slowest internal modes k = (9(1) decay on this time scale. 
(Only the center-of-mass mode has a longer relaxation time, namely 
F It[ = 0(r 2) >> S.) 

For T~> (9(1) we can use the long-time representation of (A.26) 

D u( t ) = ~2( I - e - r I,I/r + Sc ~ 

- S ~  2 e _ , ? . k , . r / 2 { c o s ( ~ z k ~ ) + c o s ( ~ k ~ )  } (4.19) 
k =  1 ~--" ~ - 

since only few terms of the k sum contribute. Here 

1 ( ~ 1 2  " ['sj--S/2"~ 2 l 2 
co.=g+ _ _  + ~ ) ,  -~<<,cij~-~ (4.20) 

For T>> 1 the center-of-mass motion (4.6), (4.7) dominates, 

Do.(t) = ( (R=m[r(t)] - R=r,[r(0)])2) o + (9(S){ 1 + (9(e-"2r/-')} (4.21) 
2d 

For T<~(9(1), k modes up to k2T=(9(1) contribute in (4.19). For 
T--* 0 in particular, the simple result of (4.17) must be recovered. Clearly, 
therefore a more appropriate representation for T <  1 needs to be found. 
Applying Poisson's sum formula, we derive in appendix A that 

/ s i - s j  (29si+silt[) 14' (2~" ~]) l / i2S/)  De( t )= (29  Itl)'/'-F~(~l~/2, for (29 It l) ' /2~r 2 

(4.22) 

with 

F(y, z, 2)=lYl + ~ (g(y+ v2)+g(z+v2)) 

for 2 = ( 2 / T )  u2)~(1)  and ~2 > S (4.23) 
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and 

e-~ 
g(Y)=f(Y)--IYl, f ( Y ) = 7 +  yerfy 

(4.24) 
2f(y)--2yf'(y)- f " ( y )  = 0  

erfy is the error function. The properties of the functions g(y) a n d f ( y )  are 
discussed in appendix A in detail. 

For T ~ 1 we have 

~ (  s,-s, ~ ( s ,+s ,  ~ (s,+,,-2S~ 
Du(t) = (29 ]tl)'/2 [ J  \ ( 2 - ~ ) + g  \(2)~ ]tl)'/2J +g \-(~-(t]pT-~J 

+ ~0(iZl e-,/(z trl~)} (4.25) 

The function (29 I tl)u2f((s,-- sj)/(29 I tl) ~/2) is the infinite-chain contribu- 
tion, which was previously calculated by de Gennes (~7~ and used by 
Martinez-Mekler and Moore, (m} though not reduced to the form (4.24). 

The g-functions originate from the chain ends. For t--+ 0 they vanish 
for almost all si+s/ 

lira D ij ( t ) 
r - o  (2~t)U2f((si--sfl/(2~t) u2) -- 1 for fixed si+sj:/:O, 2S (4.26) 

The infinite chain function has two well-known limits, 

/ s , -s j ' ,_~ls ,-sj l  for t=O (4.27) 
(2yt)l/2f~)--~(2~t/r~)l/2 for s,=s.i 

The t--+ 0 limit reproduces the static result (4.17) as required. The si--* sj 
limit yields the well-known "t ~/4 law" characteristic for the short-time 
behavior of the internal displacements of a Rouse chain. 

If on the other hand we also are interested in the behavior for larger 
times, the g-functions must be kept, since they are the precursor of the full 
function (4.22) or (4.19). 

Note that for an infinite chain, which would be described by only the 
f-function as in (4.25), the cross-over to the T >  l-behavior never occurs, 
since the mean square radius of gyration S is infinite. On the other hand, 
for the center-of-mass motion cffem(q, t) of a very long but finite chain, 
T =  (9(1) discriminates between short- and long-time asymptotics, m) It is 
thus a requirement of consistency to use the full function. 

The knowledge of the function Du(t) allows for the evaluation of 
f#~m(q, t)o+~ (4.15) in appendix B. Special attention is paid to the diver- 
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gencies of the theory, since these are needed for the renormalization group 
(RG) analysis, as pointed out in Section 3.4. 

Here a short comparison of the relation of polymer statics or polymer 
dynamics toward field theory seems in place. The transformation from 
polymer statics to field theory essentially is based on two ingredients: on 
one hand, the Laplace transformation 

d hsi - sjl e .... Is,- ~1 e - n-'Do(o) _ (4.28) 
m +q.2 

maps the static polymer propagator to the field theoretic propagator. On 
the other hand, in a diagrammatic expansion of polymer statics the chain 
of length N factorizes in segment distances (4.17), each giving a contri- 
bution like (4.28) after the Laplace transformation. The diagrammatic 
structure of such a perturbation expansion is identical with that of ~4 field 
theory. 

On the one hand, comparing Du(0) with Du(t) illustrates that there is 
no obvious extension of the transformation (4.28) between the free 
propagators of the static theories to a transformation between polymer 
dynamics and any renormalizable dynamic field theory. In particular the 
dynamic polymer "propagators" depend not only on l s i -s j l  and It[, but 
also on Isj + s j - S I .  The appearance of the latter term is a consequence of 
the decomposition of the free chain dynamics into the Fourier modes with 
respect to the intrinsic metric of the chain. On the other hand, the diagram- 
matic structure is also quite different. In particular, polymer dynamics 
"diagrams" do not order according to different segmentations of the total 
arc-length of the chain, but involve rather an order according to the inter- 
action times, as will be discussed in more detail in the next section. 

Now we proceed with calculating t-poles. Before deriving the one 
needed for the evaluation of Eq. (4.15), for comparison we first give a typi- 
cal divergent one-loop diagram of polymer statics: 

SdsijDij(o)l-d/2=~ dm Iml - I  +~/2 
-g -5-_5, 

=~ S */2 4 + 6~ (4.29) 
e 

S here is the infrared cutoff. The ultraviolet (UV) divergence at d/> 4 could 
have been expressed as dependent on a UV-cutoff L In the limit of l---, 0 it 
here appears as an e pole. The UV singularities, resp. the e poles, then are 
absorbed in renormalized parameters as in (3.59) and (3.60). 

For the dynamic problem we will use the same RG scheme. The upper 
critical dimension of the dynamical problem needs to be the same as in the 
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static problem, since the same couplings are involved and the static sub- 
structure has to be reproduced. Comparing the appearance of Do(t)-I-a/2 
in (4.15) with Dr(O) +l-d/z in (4.29) at first sight casts doubts on the iden- 
tity of critical dimensions. This, however, is compensated by the additional 
time integral. The analysis is done in detail in Appendix B. It turns out that 
the segment distance (s,.-sfl needs to be rescaled with the time variable 
(29 Itl) ~/-" as is suggested by (4.22) or (4.25). The divergence then appears 
in (4.15) in the integration over r for r = 0 .  The basic integration to be 
compared with (4.29) is 

fl tl fo S 0 Fdz ds~dsjDo(t)-I-d/2 
~0 

-- 0 ~[t[ S ds  i i(S--si)/(2~r)ll2 
2& 2S )-3+,/'- 

xF y, ( 2 ~ r ) , / 2 + Y , ~ j  

= z3 (min{ (2)3 Itl )l/z, S} y/-" 41+ Co(e) 
e 

(4.30) 

with 

1= dyf(y)-3 = 3.587 (4.31) 

with 3.587 from numerical integration of f (y) ,  (4.24). 
The singularity obviously originates from short time differences ~r ~ 0. 

Furthermore one can convince oneself (see appendix B) that it is also the 
short segment differences Is , -s j l  ~ (9((2)3r) ~/2) which mainly contribute to 
the singularity. 

The full e-poles of cffcm(q, t)0+] (4.15) are derived in Appendix B as 

fqc~(q, t) = exp{ - q2~Z ( 1 - e - r  Itl/r 

x (1 -F ~ q2F ]tl e -r1'1/r (min{ (29 [tl)l/Z'e S} ),/2 + 60(e)) (4.32) 

for 0 <)3 It[ < oo and ~-*~> S, a result which to the order considered can be 
written as 

~cm(q, t) = exp{ -- q2C-(1 - e -/-itl[1 - s~ltRl(l + ~(~))/,]/r 

+ (9(~'-) (4.33) 
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with In, e.g., chosen as (min{(2~ ItlU =, s}) =/2 and 

6( ln) l~ ~ = ~ Z~- ~( ff( /R), 6( IR) ) (4.34) 

Clearly the pole must be absorbed into a renormalization of F 

F=FR(I ,)  (I  +~f(IR)) (4.35) 

whereas ~ stays unrenormalized 

= ~R(IR) (4.36) 

The latter feature had to be expected, since the system volume ~d couples 
to the center-of-mass position of the polymer, which does not depend on 
the chain size and thus needs no renormalization. 

The ansatz (4.35) is the essence of the renormalizability assumption for 
the dynamic theory, since it implies that whichever quantity one might 
calculate, each F will be accompanied by the very same e pole (4.35). For 
polymer statics parametrized by S and u, resp. w, this structure is proven. 
For polymer dynamics it now will be tested by calculating another expecta- 
tion value with a very rich structure already in tree approximation. 

5. THE CENTER-OF-MASS MOTION OF TWO CHAINS 

In the last section we found the renormalization of ~ and F to one- 
loop order. Even after implementing the known renormalization of the 
static parameters ~, = t~- t3 and S (cf. Sections 2.1, 2.2, and 3.4) and under 
the assumption that the dynamic theory is renormalizable, we still lack 
information on the renormalization of ~. Furthermore, it is desirable to 
check the renormalization hypothesis by calculating other quantities 
besides the center-of-mass motion. 

In this section we consider a dynamical two-chain cumulant 
c 

ffl,(q, t t') = ( e x p { - - i q ( R ~ [ r ( t ) ]  (2) , _ -- --Rcm[r(t )])} ) (5.1) 

<r) r t with Rcm [ ( )] being the position of the center of mass of chain number r 
at time t. The superscript C for "cumulant" indicates that the two chains 
are connected either by the excluded-volume coupling 13 or by ensemble 
averaging and its associated coupling t3. 

(~12(q, t - - t ' )  is particularly useful, since it depends on O even in zero- 
loop approximation. It is closely analogous to the second virial coefficient 
of the static theory, which has been successfully employed to find the renor- 
malization of the excluded-volume coupling a.(t) 
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Furthermore, its structure in tree approximation is so complex that 
calculating this quantity to one-loop order will yield the one-loop renor- 
malization of all the relevant parameters. This allows for consistency 
checks with polymer statics and the results of renormalizing the center-of- 
mass motion in the last section. 

For calculating properties of n chains, the apparatus of Section 3 needs 
to be slightly extended to include more than one chain. The free theory 
consists again of the chain structure ~o[r] ,  (2.1), the finite embedding 
volume Jfe[r], (2.7), and the external fields inserted into the dynamic 
theory. The external fields, however, consist now of n x d x N components. 
For distinction of the chains a superscript (r) is given to the external fields 

( r )  h;~ (r). The free theory decouples in the chain indices r, i.e., the chains are 
independent. The excluded-volume interaction u as well as the second 
moment of the potential v couple the chains. 

Accordingly, Eqs. (3.42)-(3.45) are generalized to the generating func- 
tional for n chains as 

~n[hlo~, K~o)] 

=: ~ ~,,[h(o~,K(o~]., 
m ~ 0  

oo m 

0 I 

- -  hil~ (r)(m) G~y(r--z') hju (r)~,,) 
r = l  i , j = l  I t = l  

, - ( r )  , x exp - c l T  &' ~ ~ h )(z)r R i j ( 7 5  - -  r ) hj, (r)~o) 
r = l  i , j = l  . u ~ l  

(5.2) 

with 

o o I(~) ~) = ~ ~ y2 dt., dt" 
~r r a , r ~  = I i ,r,ja=l 

[" d~(t,,-- t') 
x ~u ~ [ ~ ( r . ,  i,., p,., t~)+~(r' , j~,  - -p , , , / ' ) ]  

-- v ~ ( r ~ ,  i~, p , ,  t , )  ~ ( r ' , j , , ,  --p,, t')} (5.3) 
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N d 

~(r,i,p,t)=f dr ~ ~ (p,,h~.~'(r),,o)iRji(r-t) (5.4) 
j = l  , t t= l 

and the fields 

h~[,~(r)~,o=hr162 ~, Po~, [t~rr,~iio~('C--to)--t~rr;t~#.t~(Z--t;)] (5.5) 
c r = l  

The two-chain function (5.1) can now be expressed as 

[ q"(~r,'(r--t)--~r,~(r--t')),O] ~12(q, t )=~e  2 h~t~(Z)to>= ---~ 

- - '~ l [  It, -- q" "~ --t), 0] hi~, (r)r = N ,-rl t~(r 

Crl q~ , X ~l [ h il, ('C)(o) =-~ t~r2t~( T-- t ), O 1 (5.6) 

The free theory yields the time-independent result 

[ ] ~l h~i;~(r)col= N r16( r -  t), 0 =e-q2r (5.7) 
0 

and in this approximation 

f#~2(q, t-t')o=O (5.8) 

The first-order perturbation theory (#~2(q, t -  t')~ contributes nonvanishing, 
connected diagrams, the tree approximation. These diagrams are propor- 
tional to either ~ or t3. The second-order perturbation theory r t -  t')2 
yields one-loop diagrams. These diagrams contain the information about 
the one-loop renormalization of t~ and t3. 

The tree approximation is evaluated in Appendix C. In the continuous 
chain limit the result takes the form 

- - -  - - d  cff|9(q, t ) l -  ~ 1;:dsidsje-q2sc~ 

x [ 0 -  t~ e-q"rlt'(1 + q2F 1,1) + d9 ( ,  ~2, t~ q2 (F--~t~)2"~l - -~-- j  j (5.9) 
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with c o �9 from (4.20) and 

o(g)=~(a)+~(~) (5.1o) 

(912( q, t) has the following properties also beyond the first-order perturba- 
tion theory: It vanishes like ~-d for ~ ---, or. This is understandable from the 
observation that fql_,(q, t) is the cumulant of two independent chains, which 
should vanish like (embedding volume)-1 

As predicted in Section 2.2, for t = 0  there is only one coupling 
= a -  ~, which determines the static behaviour. 

For t 4:0 independent information about ~ and d can be gained. 
The different time dependence also can be understood: The correla- 

tions of the center-of-mass positions of the two polymers due to the mutual 
repulsion decay exponentially in time, whereas the correlations due to 
averaging over the quenched random potential are time independent. 

Coming back to the technical aspect of the calculation, one observes 
that the tree approximation contains all parameters ~, ~, F, S, and ~ of the 
theory. The variables ~ - a ,  ~ - d ,  F, and S are clearly distinguished by the 
different coefficients depending on Itl or q2 The e poles of higher order 
perturbation theory thus can be uniquely attributed to these variables. The 
well-known results on ~ have to be reproduced by the dynamic calculation. 
Thus from t~ -a and t3~ -a also the e poles belonging to ~ and ~ can be 
determined. 

Now the one-loop contributions ~12(q, t)2 have to be actually deter- 
mined. The calculation is given in Appendix D. Here only some features of 
the technique will be outlined. In polymer statics one uses Feynman 
diagrams to keep track of the different contributions. The contributions are 
distinguished by the number and the order of the interacting segments 
along the arc length of the chain. In polymer dynamics, in contrast, one 
has to keep track of the temporal order of the segment interactions within 
each chain. This is due to the response prefactors (5.4), which consist of 
temporal derivatives of parts of the exponential. It is the O-functions in 
R o . ( t ) ,  (3.41), which determine which parts of the exponential appear in the 
response prefactors. As in earlier calculations I-cf. derivation of (4.15) or 
Appendix C], the expressions can be made compact by partial integrations 
in time, starting from the earliest interaction. (This procedure also appears 
most promising for the renormalizability analysis to all orders of polymer 
dynamics with excluded-volume interaction, but without quenched random 
potentials.) 

In the course of calculating the expressions of Appendix D, we in fact 
have used a graphical notation for the temporal order of the segment inter- 
actions as a bookkeeping device, but since confusion with usual Feynman 
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diagrams is predetermined and since also Appendix D does not contain all 
details of this long but unproblematic calculation, we have refrained from 
introducing such "diagrams." 

We will give here but one intermediate step of the calculation of 
Appendix D. One basically and before considering temporal order has to 
distinguish two different types of connected diagrams in second-order per- 
turbation theory: in the 2 + 2  diagrams both couplings act between the 
chains. In the 3 + 1 diagrams there is one coupling between the two chains 
and one coupling is a self-interaction of one chain. 3 + 1 is meant to 
indicate that there are three segments of one and one segment of the other 
chain involved in the two interactions. 

Accordingly we split the one-loop expression into 

fgl2(q, t),_ =g(q,  t)(3+l)+g(q, t)(_,+_,) (5.11) 

and find in Appendix D 

alfs ~ g(q, t ) o + l ) = ~  - ~ dsids.idskdst e-q'-sc~' 

x ( { 0 - a e - q 2 r ' ( 1  +q2Ft)} ( a - f )  

xDij(O)-a/2(1 ex q2[Gik(0)-Gjk(0)]'-'~ - p ) 

+~Oe-q~r'2 Is F2 drdr' O(t-r-r ' )F(t-r--r  ') 

x q2 J ~-~ pq 

xe-q'-D~(~-pq(Gik(~: + r')--Gjk(r')--Fz)] ) (5.12) 

for the 3 + 1 diagrams and t >/0, and 

g(q, t),,_+,_,=~-a l da~adap2 ~a(q-pl-p,) 

x -~ dsi dsj dsk ds/e -plqsci)- p2qSckt 

~[132 + (~--2t3) t~ e-q2rt(l + q2Ft)] e ptp:~~176176 • 
( 
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2 t 
q- 2/~ 2 e -q r'(plq)(p2q) f '  Fdr F(t --r) e plp2tDiktr) + Djttr)) 

ao 

t 
-- 2t~z3 e -q-r ' tq2 fO I" dz F(t - r)(pl q e ptqr~ + P2q emqrr )  

X e plp2(D~(r) + Djl(O)) 

- u v  e-q2r' ~i F2dzdz' 0 ( t - r - v ' ) [ - 1  + q 2 F ( t -  v -  ~')] 

x [(Pl q)2 eptqnr + r'l + (p2q)2 ep2qnr +r')] 

ept p2(D/k(r) + Dfltr'))~ • 
J 

(5.13) 

(_9(~S]r 2) or of 

m --d g(q, t)(3+ i)--~ ~fSodSkdSle-q2Sckt 

X {[ ~ -- ~ e-q"r'( 1 + q2Ft)](--q2SCkt) (~ -- ~) 

-- t~ e -q-'n(q2_F't)2/3 I (min{ S 2, 2~t}e )~/4 + O(e) } 

with the constant I from Eq. (4.30). 
Of the four terms in (5.13) only the first one contributes an e pole, and 

Appendix E yields 

g(q, tl~2+2)=~-a ~ dskdste -q'sck' 

x [ 2~ 2 S~/2 +e O(t) 

+ a e-q2r'( 1 + q2Ft) (2~ - 4~) 8c/2-~ (~ 1 (5 .15)  

S ̀ /z + r 

(5.14) 

for the 2 + 2  diagrams. We suppress corrections of 
~( aq2( r t  )2/~2). 

The e poles of fg]2(q, t)2 are calculated in Appendix E. Comparison of 
the first term in (5.12) with the tree approximation (5.9) leads us to expect 
that this loop integral cannot yield e poles belonging to F, while the more 
complicated time structure of the second term in (5.12) hints at e poles of 
dynamic origin. In Appendix E it is in fact found that 
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The S dependence of the expressions (5.9), (5.14), and (5.15) requires a 
brief reconsideration. By means of (4.20) and with the substitution 
i =  (s~-S/2)/S etc., we find that 

fo~dSidsje-q'-Sc~= S2 f '/2 di dj e -q2sr i'- + i'-' (5.16) 
--  1/2 

The complete expression for f~2(q, t) up to second-order perturbation 
theory can thus be summarized from (5.9), (5.14), and (5.15) as 

cffl2(q, t)o+l +2 

=~-a~ s2 f'/i/ didje-q'-s,'/6+i2+J'-) 

{[13 -- t~ e-q-'n( I + q2/"t) ] • 

, 1 S ~/2 + ~(e).] 
x [ 1 -  q-S (~ + i2 +j- ' )  (t~- 0) e 

J 

- • e -q"rt(q'-Ft)2 f) I (min{ S'-, 2~t} )~/4 + C(e) 
8 

S ~/2 + ~o(e) S ~/'- + ~o(e)'[ 
+2~ 2 + ~ e-q-'r'(1 + q2Ft) (2t~- 413) - 

J 
(5.17) 

We now introduce renormalized parameters. The first term in (5.17) 
together with the minimal subtraction scheme for the e poles determines 
uniquely that the chain size has to be renormalized as 

S=SR(IR)(I ~(IR)--V-(IR!)e (5.18) 

with the arbitrary length scale 0 < IR < ~ .  The second term yields 

F= FR(IR) ( I +I V(elR) ) (5.19) 

Using (5.18) once more for S 2, one can read from the third term in (5.17) 
the required replacement 

~-a ~=~R(IR)--d~R(IR)IR~(I + 2tT(lR) e4f(/R) ) (5.20) 
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and from the fourth, that 

~--d ct= ~R(IR)--'I ~R(IR) l~ ( l +4a(IR) ~ 66(lR)) (5.21) 

The renormalized parameters eliminate exactly the e poles and not more 
(minimal subtraction). 

Now it has to be tested whether the renormalization (5.18)-(5.21) of 
the parameters as derived from aJ12( q, t), (5.17), is consistent with the pre- 
vious knowledge about the theory. 

1. We remark that the renormalization of / "  in (4.35) as derived from 
fgcm(q, t), is reproduced in (5.19). 

2. We know from polymer statics without disorder II) that 

S=SR(IR)(1--ff(IR)), ~=~R(IR) I~(I +4~ IR)) for z3=0 (5.22) 

The result on S is reproduced by (5.18). The result on ~ is reproduced in 
(5.21) we additionally use 

= ~R(IR) (5.23) 

The latter identity was already derived from from(q, t) in (4.36). 

3. In Section 2.2 we recalled that in the limit of zero segment concen- 
tration in static expectation values, the theory with quenched potentials 
can be derived from the theory without random potentials by simply 
replacing the excluded-volume coupling ~ by the new coupling 

~ ' = a - - ~  (5.24) 

The subtraction of e poles is designed such as to absorb UV divergencies. 
It should be independent of the system volume. We therefore conclude that 

S=SR(IR)(I -- 't~(~ R)), ~,=,~R(IR) I.~(1 + 4'~'(IA'e ) (5.25) 

must hold in a renormalizable theory. We furthermore know that the 
renormalization of S and ~r to all orders has to be independent of the 
coupling ~, because ~ does not play any separate role besides ff within this 
static subtheory. The requirement (5.25) is fulfilled by the result of (#12(q, t), 
as can be derived from (5.18), (5.20), (5.21), (5.23), and the definition 
(5.24). 
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The last observation leads us to rather consider 0 and if, as the basic 
couplings of the theory. Then 0 reads 

O=6R(IR) I ~ ( 1  2V--(/R)'~ 2v~(IR)) (5.26) 

Equations (5.19) and (5.23)-(5.26) make up the full one-loop renormaliza- 
tion scheme of the theory, which now already has passed a number of 
consistency tests. 

6. THE I N T E R N A L  M O D E S  OF A C H A I N  

The quantity to be discussed in this section is 

~, , ( i , j ,  q, t -- t') 

= (exp{ - i q [ r i ( t )  -- rj(t ' )]  } ) 

= ~l[h,(r)(o~ = - -q(6 ,6( t - - z ) - -6 , i6 ( t ' - -v ) ) ,K(o) - -O ] (6.1) 

There are several physical as well as technical reasons to calculate this 
quantity: Since the motion of the free chain can be decomposed into the 
center-of-mass motion and the internal modes, ~, t  contains information on 
the chain motion independent of Cgcm. Both C~cm(q , t) and ~m(i, j ,  q, t) are 
typical quantities measured in Monte Carlo simulations. 

Furthermore, the expectation value (6.1) is of experimental interest 
N ~,t(i,J, q, t) is the dynamic structure factor, which can be because Z;.i= l 

measured in light scattering experiments/6' ~8) 
In addition, ~, t  plays a double role in the renormalizability analysis: 

On one hand the renormalization of the parameters of the theory has been 
determined uniquely in the last section and the calculation of (6.1) serves 
as a renormalizability test. On the other hand e x p { - i q [ r ~ ( t ) - r : ( t ' ) ] }  is 
a generic insertion appearing in higher order perturbation theory, as can be 
seen in (3.20). Such terms are included in the formal aparatus of perturba- 
tion theory by the additional internal fields (3.45). Higher order loop 
calculations therefore will always include the renormalization of this 
structure. 

In tree approximation it is easily derived that 

{q' } ~.m,(i,j, q, t - t')o = exp - -}- [ G,-,(0) + (70.(0) - 2 G o ( t -  t ' )]  

= exp[ - q 2 D u ( t  - t ')] (6.2) 
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with the definition (4.14) of D u ( t ) .  The properties of D u ( t )  are derived in 
Appendix B and summarized in Eqs. (4.16)-(4.27). In (4.14) D o . ( t - t '  ) 
is also identified with the expectation value ( ( r i ( t ) - O ( t ' ) ) 2 ) o  in tree 
approximation. Beyond this approximation the identity 

((r,.(t) - rj(/')) 2) = --Aq ]q=o ~nt(i, J, q, t -- t') (6.3) 

holds. Equations (6.2)-(6.3) are in close correspondence to Eqs. (4.4)-(4.7). 
The one-loop expression for ~in t ( i , j ,  q ,  t - -  l ' )  is 

f f im(i , j ,  q, t --  t')~ 

1 f p l a k ~  f~ y~-dt t = - - -  dt'l 
2 

{ d(tl--t ' l)  
x u - - [ ~ l ( k , p ,  t i ) + ~ ( l , - p , t ' ~ ) ]  

Y 

- v ,~(k, p, t]) ~( l ,  - p ,  t',)} 

x exp{ - q 2 D u ( t - -  t ')  - p 2 O k t ( t  I --  t'l)} 

x exp{ - - p q [ G i k ( t  -- t , )  --  Gu( t  - t'j) --  G j k ( t ' - -  t , )  + Gjt( t '  - t't) ] } 
(6.4) 

with the response factors 

~ ( k ,  p, t~ ) = p q [  iRik( t --  tt ) --  iRjk( t' - -  tl)] --p2iRtk(t', -- t , )  
(6.5) 

~t( l, --  p, t'~ ) = - - p q [  iRu(  t --  t'~ ) -- iRjt(  t' - t'~)] - pZiRkt(  t ] --  t't ) 

Calculation as in previous sections yields in continuous chain variables 

C~int(i,. ~ q, t), 

_q2D~(t) 1 S 
= e  4Io d s k d s l  

f [ • - - ( ~ - - O )  lSk- -S t l  - * z  e x p \  4 1 S k _ S l l  / 

- - I f  d x O e x p ( . q 2 ~ l ( O ' r - 2 t - - z ' Z ) ]  
Ot \ 4 ISk -- sl l  

fo r') Dk/(r)-~a+2)/20Djk(r') ODil(t - -  r - -  Z") +Oq2 d r d r ' O ( t - r -  Or' 0 ( t - - r - r ' )  

x 1 + 2Dkl(r) J \ 4-Dk~-~ (6.6) 
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with the abbreviation 

~okt(t, t', t")=D,k(t")--D~l(t"--t)--Djk(t')+Djl(t+t') (6.7) 

Note that in contrast to the center-of-mass motion, which only depends on 
0, here also a term proportional to fi - 0 = ~, appears, which is obviously a 
static contribution. For the internal modes the self-interaction of the chain 
does play a role. 

Which e poles do we have to find in the integrals (6.6) if renor- 
malizability holds? Exactly those which will be eliminated by introduction 
of the renormalized parameters in the tree approximation (6.2). This 
requires that we reconsider the functional dependence of Do(t) on the 
parameters of the theory. From the representation (4.22) for (2~t) ~/2,~2 
we derive 

F( i-j  i+j+l 2 ) Do(t)=S(2T)'/z \(~-~/2,-(~5_, (2T-)1/2 = S ~ ( i , j ,  T) (6.8) 

with 

[ S- S and i =  S e - ~, (6.9) 

The segment variables i, j are invariant under renormalization, t is the 
physically measurable time and thus also invariant. The parameters S and 
F are subject to renormalization. By means of (5.19) and (5.25) Do(t) reads 
in renormalized parameters 

rR(6,)t ! +__I6(IR)/e~ 
(6.10) 

Inserting this in (6.2) yields 

~i,t(i,j, q, t)o 
FRt~] 

= exp [ - q 2 S , ~  (i, J, --~-n j j 

[~(IR) I6(lR) + ff,(l R) 
x 1+~ ~- e 

a r,,t~ + co(g2)] 
Olnt) qZSn~'(i,J,--~nj 

(6.11) 
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In a renormalizable theory, the e poles of (6.6) must exactly eliminate the 
e poles of (6.11). Then (6.6) needs to have the following e poles: 

~.t(i,.~ q, t)~ 

,o ( ff~(lR) Ig(lr)+w(lR) 0 ) 
= e - q "  i j l t )  b - -  

e e 0In t q2D•(t) 

x [ 1 + tP(e)] (6.12) 

In Appendix F it is shown that the singularities of ~int(/',j, q, t)~ actually do 
have this involved structure. We conclude that the internal modes are also 
renormalizable within the RG framework derived in the last section. 

7. THE RG FLOW OF THE P A R A M E T E R S  AND THE 
RENORMALIZED DIFFUSION CONSTANT 

7.1. The One-Loop Results for the Parameters 

The one-loop analysis of the three expectation values in Sections 4-6 
consistently and in agreement with the static theory results in the renor- 
malized parameters (5.19) and (5.23)-(5.26). 

For the two couplings we found in (5.25) and (5.26) 

I 4#(IR) 1 ~V=IR-"W(/R) 1 + +(.00~n2(lR)) (7.1) 

0=I~-"g(I ,)[1 2ff(lR)e t-2w(/R)e +6)(~ff'-(lR)) 1 (7.2) 

One specific unrenormalized theory defined by 0 and if, corresponds to a 
one-dimensional manifold of renormalized theories parametrized by the 
length scale lR. Since 0 and ff are invariant under variation of lR, an 
infinitesimal variation of IR yields 

d In .5(lR) 
d In lR 

din 6(lR) 
d In lR 

e -- 4~(IR) + (P(ff2(IR)) 

e + 2b(/R) -- 2~'~(lR) + 0(g2(lR)) 

(7.3) 

(7.4) 

called the RG flow of the couplings. The other two parameters S and F are 
expressed in renormalized couplings as 

822/82/I-2-15 
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S=Sn(ln)[ l-ff~(IR)e +r (7.5) 

F= FR(IR) [ l +I6(lR) ] q-" (-9(V2(IR), 6(IR) IV(IR) ) (7.6) 
E 

with I =  3.587 (4.31). 
The invariance of the unrenormalized parameters S and F under 

variation of In leads to the RG flow equations for SR(In) and Fn(In): 

dlnSn(ln) 
din In 

= ff'(ln) + ~o(ff'2(ln)) (7.7) 

dlnFR(ln) 
d In In 

�9 16(lR) + ~0(62(l,,~), 6(ln), ff(ln)) (7.8) 

7.2. Beyond One-Loop 

More is known about the RG flows (7.3), (7.4), (7.7), and (7.8) than 
was derived from the one-loop calculation of the last section. 

As outlined in Sections 2.1 and 2.2, the parameters Sn(IR) and fO(ln) 
belong to a closed substructure. Therefore the corrections already have 
been written as (fl(17V2(/R)), since the RG flow of Sn and ff cannot depend 
on 6. The (~, Sn) substructure is identical with that of polymer statics and 
thus also with (17=0)-~b4-theory, which are known to be renormalizable 
theories. The RG flow of SR(ln) and ff~(ln) has been calculated to five-loop 
order? Here we only recall the general structure. In a minimal subtraction 
scheme 

dln  ~(ln) 

d In In 
=e + F,,( ff,( ln) ) (7.9) 

holds generally, with F,,.O~) an analytic function of �9 and independent of 
e. For any e > 0 and for any start value ~ ( l ) >  0, a growing In lets ff,(l n) 
flow to the stable fixed point w*, which has been determined from 
e + F , . ( w * ) = 0  as w* =0.364 in d = 3 .  (22)'4 For ~ ( l ) = 0 ,  w * = 0  is a fixed 
point, but an unstable one. For ~i~(l)<0, there is no fixed point and also 
the connection of the model with actual polymers breaks down. 

3 Four loop, ref. 19; ,6 function in five loop, ref. 20; correction, ref. 21. 
4 For the redefinition of u* see ref. 23. 
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The flow of SR(IR), (7.7), is known to higher accuracy, too. With the 
notations 

d in SR(IR) 1 
--: 2 SR(lR) ----: nR(IR) 12 (7.10) 

d In IR v(~(lg)) '  

it follows that 

d In nR(IR) 
-v(~( lR)  ) = 1 (7.11) 

d In IR 

In minimal subtraction, v(ff~(lR)) is a function of ff(lR) only and inde- 
pendent of e. 

For IR>>I two asymptotic behaviors coincide: On one hand, the 
contributions of all irrelevant operators in the RG sense actually vanish, or 
the distinguished manifold J / a s  introduced in the introduction is reached. 
On the other hand, ~rv(lg) reaches its fixed point w* for any if(l) > 0. Then 
one can be sure that on one hand all three-segment interactions, etc., con- 
tribute only in a negligible way, whereas on the other hand v(~(IR)) can be 
replaced by the constant v(w*) and exponentiated. This yields an 
anomalous power law at the fixed point 

d ,,~,,..) 
(n R( IR) lR) = 0 or nR(lR) oc l~ l/'~'''*) (7.12) 

with the exponent v(0) = 0.5 and v(w* = 0.364) = 0.588 in d = 3. 
A special case of (7.12) will be needed below. Compare two 

parametrizations of a model on scales I and IR, IR > l. Suppose that on the 
scale I the model is sufficiently described by the parameters on the dis- 
tinguished manifold Jr Suppose further that ~(I) ~ w*. Denote nR(l) =: N, 
with N proportional to the true microscopic chain length. Let the scale IR 
be fixed by the condition nR(IR)= 1. Then 

lR= N'~"")l (7.13) 

The nontrivial power law (7.13) originates from the coincidence of the 
two asymptotic behaviors discussed above. This coincidence, however, is 
not necessary. The  condition for a universal law is the decay of irrelevant 
perturbations for IR~>I. "Universality" means that only few relevant 
parameters on the manifold Jr  determine the behavior at large length 
scales. If additionally a fixed point of the coupling is reached, the universal 
law is a power law. If not, the universal law takes a more involved form. 

This leads us to discuss the coupling t~(lR), which in fact does not have 
a fixed point in physical parameter space. 
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Some knowledge about ~(IR) is due to another mapping, which yields 
further information about the flow of 0(IR) beyond (7.4): By evaluating 
appropriate limits of two-chain quantities such as fq~z(q, t), (5.1), it has 
been possible to prove the identity of the flow of the couplings 6 and 
with the couplings of a special ternary polymer system, t2) Ternary systems 
consist of two types of polymers a and b. Segments of polymer type a inter- 
act through a coupling ff,~, etc. The flow of the coupling �9 can be shown 
to be identical with the flow of the coupling ff~, or ~bb. The flow of 6 can 
then be identified with the flow of -tT,b, provided the system is symmetric: 
a o , -  tibb. The equilibrium properties of ternary polymer systems can be 
expressed by a renormalizable theory. Therefore we know that, the sub- 
structure spanned by the parameters v, w, and SR is renormalizable. The 
general structure of the RG flow of 6 is similar to (7.9), namely 

din  6(lR) 
d In lR 

= e + F~(f(IR), ~(IR)) (7.14) 

with Fv(6, ~) being analytic in 6 and �9 and independent of e if a minimal 
subtraction scheme is used. The function is known to three-loop order: ~25) 

din  O(lR) 
l-----~ = e + 2 6 -  2 ~  + 262 - 6Or~ + 2 ~C + [ 3 + 3( (3  ) ] 63 

d in 

- [ 1 8 + 1 2 ( ( 3 ) ]  60-~+[91 + 18 ( (3 ) ] - - '  - -  0 W -  

I l l  _ _ _  1~3 + ~ ( g 4 )  

8 
(7.15) 

Not for any fundamental reasons, but only to simplify the notation, below 
we will restrict the analysis to rr'(lR)= W* at a fixed point. In this case 
(7.14) has the form 

din  6(lR) ~(w*) 
dln-~R , . ,= v(w*) [1 + ~(lR) f~,.,(6(lR)) ] (7.16) 

with 

o~( w* ) 2 - v( w* ) d 
- e  + Fv(0, w*) (7.17) 

v(w*) " v(w*) 

~t(w*) fff,,,.(tY):= Fv(6, w*)- Fv(0, w*) 
v(w*) 

(7.18) 
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The appearance of o~(w*)/v( w* ), (7.17), as the leading term in an expansion 
in 17 has been proven in refs. 24 and 25. Here o~(w*)=2-dv(w*) is the 
"specific heat" exponent at the fixed point w*. The quantity o~/v also can be 
interpreted as the Hausdorff dimension of the intersection points of two 
mutually noninteracting but self-repelling polymers. 

Fixing aa, -- ~bb = w* in the ternary polymer system, ~ab(lR) will reach 
a stable fixed point u*b(w*) for large l R for any starting value aab(l)> 0. 
Another fixed point is ffa0 = 0; it is unstable under growing 1R for arbitrary 
a,,b(1) 4:0. For any negative start value of ~b(1) no fixed point is known. 

A negative value of ~,b maps to a positive value of 6. Because v was 
introduced as the second moment of the potential, it is always positive, i.e., 
the coupling is attractive. 6 therefore does not reach a fixed point for non- 
vanishing disorder. 

Now we follow the logic outlined in the introduction. We started from 
any model on a truly microscopic scale. Increasing the basic length scale of 
the description, the theory approaches the manifold Jr of relevant 
parameters. Assume that the manifold is approximately reached on the 
scale /. For l R >_-l the treatment of only the relevant parameters as con- 
tained in our model represents the full physical system, and the RG flow 
within J / / is  described by Eqs. (7.9)-(7.11) and (7.14). The RG flow within 
Jg can now be integrated safely over a finite interval of l, independent of 
the existence of a fixed point. It gives a universal result. Such universal laws 
can also be expressed as invariances. The RG flow of ~, (7.16), can be 
expressed as such an invariance: 

~ 6(1,) l,~/"exp -- 1 - ~ i , / J  = 0  (7.19) 

(If 1 +v*f,,. .(v*)=0 for any v*>0,  (7.19) would describe the usual RG 
flow of 6(IR) to a nontrivial fixed point v*, but there is none for v>0.)  
Equation (7.19) is equivalent to (7.16) and holds generally in the realm of 
perturbation theory. Its evaluation up to now is restricted by the fact that 
only few terms (7.15) of the expansion off,,.,(v) are known. Therefore the 
theory can be quantitatively evaluated only for 6(lR)~< (9(1). This restric- 
tion, however, is of only technical origin. 

Under the conditions of Eq.(7.14), i.e., if the theory can be 
appropriately described by only the relevant parameters N and ~ ( l )~  w* 
on the length scale l, and if furthermore l~ is fixed by nR(IR) = 1, one finds 

~(1) N ~ = r N q ) exp (-"ou) i-+~vf,,..-T-v)/ (7.20) 
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If corrections from 6(l)f,,.,(6(l)),~ 1 can be neglected, 6(l) can be set equal 
to zero in the exponential on the right-hand side of (7.20), and 6(NVl) is a 
function only of 6(l) N ~ 

6(Nff) = "//'(if(l) N ~) (7.21) 

This identity can be found by inversion of (7.20). The inverse function 
~-(v) exists, because (7.16) does not have a fixed point. 

We now finally integrate the RG flow of FR(IR), (7.8). Since F is the 
essence of a dynamical theory, no mappings to static theories are available. 
The only information we have beyond (7.8) is, that all terms of perturba- 
tion theory proportional to u"v ~ n arbitrary, vanish; cf. (4.11). Since the 
coupling w comes in by annealed averaging, the argument (4.11) can be 
extended to the inclusion of fluctuating potentials: All contributions to F 
vanish which are proportional to fiV'v -~ n arbitrary. If the theory is renor- 
malizable, we therefore expect in general, that 

d In FR(IR) 
I 6(lR) g(6(lR), ~i~(IR)) (7.22) 

d In IR 

with g(0, 0) -- 1 and g(6, fi~) analytical in both parameters and independent 
of e in minimal subtraction. It is not known, whether g(6, fi~) actually 
depends on ~, but it appears likely from preliminary calculations. 

By means of (7.16) and of the monotony of 6(IR) > 0 as a function of 
lR, the invariance 

d [ FR(IR) exp (v  (7.23) re't"'/g(v_, w*) dv'~] = 0 
d6(IR) ~o 1 + vf,...(v) JJ 

at a fixed point w* of fi~ is derived. Thus FR(IR) at a fixed point w* of i~ 
is uniquely determined by Fa(l), 6(I), and •(IR). There is no explicit 
dependence on I R or e left. In the limits of Eqs. (7.14) and (7.20), FR(Nq) 
can be written as 

Fn(N"I) = FR(I) exp -- :t ~,~ct) 1 + vf,..(v) / (7.24) 

Further information about g(ff, ~) can only be gained from physical 
considerations. From the proportionality of FR(Nq) to the diffusion con- 
stant for a chain of length N on one hand and from the expectation, that 
longer chains should be stronger bound to local energy valleys on the other 
hand, we always expect 

d In FR(IR) 
< 0  for 6(/R) > 0 (7.25) 

d In IR 

This leads to analyze finally the renormalized diffusion constant. 
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7.3. The Renormal i zed  D i f fus ion  Constant  

First results on the evaluation of the center-of-mass motion can be 
found in ref. 11. Especially two asymptotes are natural objects of examina- 
tion. The short-time asymptotics will be quantitatively analyzed and com- 
pared with Monte Carlo data in a forthcoming paper? ~-') Here we discuss 
the long-time asymptotics of the center-of-mass motion. 

In tree approximation, diffusion was defined as the limit of F Itl '~ ~2 
in (4.9), i.e., as the motion in seemingly infinite space. For the rest of the 
section we will let ~ --* oo. The internal motion of the chain defines another 
time scale T=F [tl/S, (4.18). For v 4=0 the internal modes couple to the 
center of mass mode, and there is a short- and a long-time asymptotics of 
the center-of-mass motion, distinguished by T =  ~(1). Following conven- 
tion we call the limit of T>> 1 diffusion. Discussing diffusion, we therefore 
concentrate on the mean square displacement R'-(t), (4.6), of the center of 
mass within time t in the limits of ~2>> F[t[ >> S. Equations (4.6), (4.9), 
(4.15), (4.30), and Appendix B lead to 

R'-(t)o+ t = 2dF Itl (1 - 

= 2at Itl {1 - 

wi th  d ( T ,  e) analytic in e and 

t --72 ( ' s d s i d s j  _ 3 +  ,9"~ 
0~o Fdrt t Jo - " ' ~  Du(t) '-) 

(7.26) 

with nR(IR) from (7.10), 

R2(t)= 2dFR(IR) ItI {1--6(IR) (InR(IR)-f/2- 

x [1 + (9(g(lR))]} 

1 + nl~(lRy/, - d(  TR, e)) 

(7.28) 

l i :  t - r  d ( T ,  ~) = g  & (2r)-~ + , / 4 _ _  
t 

| f ( i -xv , /~  ( 2x 2 "~ -'+~/2 
X;o dx --,/,/~ dy F y , -~r+ Y, ~ r /  

- ~  dr 2-1r  -1+~/4 

1 et~ 

x;s dx f_~ dyf(y) -3, f(y)=F(y, oo, oo) (7.27) 

In renormalized parameters, R2(t) reads with Ta := FR(lR)Itl/SR(IR) and 



234 Ebert 

IR is a free parameter of the renormalized theory, which we now fix by the 
condition nR(IR)= 1, i.e., we choose IR of the order of the size of the 
polymer coil. With this choice the analytical remainder reduces con- 
siderably, and we have to evaluate 

R2(t)=2dFa(lR) Itl{1 - tY(IR)d(TR, e) [1 + (.0(g(/R))] } (7.29) 

The diffusion constant in particular is given by 

R2(t) 
Dv.,,..N.y := lim - -  

t~Ct~ t 

=2dFR(lR) {1 -- b-(lR) d ( ~ ,  e) [1 + (9(~(/R))] } 

for nR(IR) = 1 (7.30) 

Numerical integration yields d ( o z ,  e )=-2 .218+~0(e) .  (Were we to 
evaluate d ( ~ ,  s) for s = 1, our procedure would follow exactly that under 
the name of renormalization in d = 3  as introduced by Schloms and 
Dohm.("-2)) 

If the theory is also renormalizable beyond one-loop order, one 
expects the diffusion constant in general to be given by 

D,,.,,.N.~,=2dFR(IR){1--g(IR)a(alR),)~(IR),e)} for nR(IR)=I (7.31) 

g(lR) a(~(lR), ff'(lR), e) is again the analytical remainder left over after mini- 
mal subtraction of the e poles. Accordingly a(ff(lR), )~'(IR), e) is analytical in 
all its arguments and a(0, )~(lR),e)=d(oo, e). It is not known, whether 
a(g(lR), ff'(lR), e) in general depends on ~,, but it appears likely from some 
preliminary calculations. 

Equations (7.30), resp. (7.31), if renormalizability holds beyond one- 
loop order, are the central result of the RG calculation of the diffusion con- 
stant. They are completely general, i.e., not restricted to a fixed point of )i~ 
a small value of g(l) or alike. They give the full nonlinear scaling behavior 
of the diffusion constant. 

Let us now relate the parameters on the scale IR again to those on a 
smaller intermediate scale l with parameters also on the distinguished 
manifold ~ ' .  Let v~(l)~w* and define nR(l)=: N. Then Eqs. (7.14) and 
(7.24) can be used to rewrite (7.31) as 

;,,it) ( v 
D.,,,..,N,;,= 2d--  ~ exp ---~O~.o l + v f,,..(v) J 

x [ 1 - g(N"l) a(g(N~l), w*, s)] (7.32) 
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with 

o r  

(v f.,,, ls/  w,/d q 
"07R(l) = FR(l) nR(l) exp Jo 1 + vf...(v) J (7.33) 

~]R(Z) ~(6(Nq),  ~), ~(0, e) = 1 (7.34) D,, ,,.. N.r =: 2d T 

7R(I) = F~(l)nn(l) is the segment diffusion constant on the scale l [cf. Eqs. 
(2.10) and (4.8)-I and thus is independent of macroscopic parameters such 
as the total chain length. 6(l) also is a microscopic parameter. Therefore 
~R(l) also is microscopic. The N dependence of the diffusion constant is 
thus the explicit one of Eq. (7.34). Note that it does not simply scale like 
N -x, x = const, as one would derive near a fixed point of the couplings. 

Let us now evaluate the expression to lowest order. Equation (7.20) 
yields 

ff( N"l) = 6(1) N~' + 6o(6(l)) + [o( 6( l) N~) 2 (7.35) 

Using further the notation of Eq. (7.30), the diffusion constant becomes 
explicitly 

2d 7R(/) [Vlg(O,w*)f( l )N~+~o(6(l ) )+~p(~(l)N~,)2 1 O,.. ,,... N. ), = T exp -- 

•  6(I)N~'+(o(6(1))+C(6(I)N~') 2] (7.36) 

with the numbers I=3.587 (4.31), g ( 0 , 0 ) = l  (7.22), and d ( ~ , e ) =  
-2.218 + ~:0(e) (7.30). 

We seemingly have reproduced here Machta's predicton of 
D oc N -]  exp[ -c6(1) N ~'] for the diffusion constant in a random poten- 
tialF 8) (Machta derives this prediction only for a specific model, but the 
argument can easily be generalized.) Note, however, the neglected terms. 
Our concrete result (7.36) is useful only in the limit of 6(l) N" < 1. Machta's 
result, however, can be challenged, too, because he treats the diffusion pro- 
cess as due to transitions of the whole chain between cells of the size of a 
chain, and thus.neglects all the structure of the problem on scales smaller 
than the chain size. 

Accordingly there is no quantitative prediction for the diffusion con- 
stant for 6(l)N~>> 1. Note, however, that even in this limit the general 
parametric dependence of Eq. (7.34) prevails if the theory is renormalizable. 
The result (7.34) or more generally (7.31) is the universal result of a RG 
analysis. 
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8. S U M M A R Y  A N D  C O N C L U S I O N  

We have treated the diffusion of long polymer chains through a short- 
ranged quenched random potential. This model is designed to deal with 
real local potentials as well as with entropic traps or barriers. It is thus 
complementary to reptation models, which emphasize rather the topologi- 
cal constraints. 

Analyzing this model of polymer diffusion in local random potentials, 
we have shown that it contains all physically relevant parameters in the 
limit of long chains, i.e., the relevant parameters in the RG sense. These 
parameters are the arc length of the noninteracting chain S, the diffusion 
constant 2dF of the noninteracting chain, the excluded-volume coupling u 
for the strength of the two-segment repulsion, and the second moment v of 
the random potential. 

Using standard methods of the theory of dynamic critical phenomena, 
we can formulate the theory as a perturbation expansion in u and v about 
the limit of a freely diffusing Rouse chain. A naive perturbation expansion 
in the couplings u and v leads to expressions diverging in four dimensions, 
and a RG approach has to be implemented. The general framework of 
these calculations was provided before discussing special correlation func- 
tions. The couplings of course play different roles: While u is an instan- 
taneous repulsion, v appears as a time-independent interaction after ensem- 
ble averaging over the quenched random potentials. It renders the process 
non-Markovian. Therefore u and v appear in a characteristically different 
way in the dynamic diagrams, in contrast to static expectation values, 
which, if renormalizable, depend only on one coupling w := u - v .  In 
dynamic expectation values in particular the center-of-mass motion is unaf- 
fected by the excluded-volume coupling u. Only the disorder coupling v 
couples the internal modes to the center-of-mass mode. 

We derived the general structure of the perturbation expansion. An 
essential ingredient of the calculation is the distance function Du(t), (4.14), 
which shows quite nontrivial short-time behavior. As a consequence, the 
integrals yielding the UV singularities differ considerably from integrals in 
field theory and polymer statics. Also the "diagrammatic" bookkeeping of 
perturbation theory varies considerably from polymer statics or field theory. 

Having to choose correlation functions for calculation, the center-of- 
mass motion and the internal modes of a chain are obviously interesting. 
Furthermore, the correlation of the centers of mass of two different chains 
is the simplest two-chain quantity that can be considered. The correlation 
functions of these three quantities are calculated to one-loop order. Renor- 
malizability requires that in every expectation value the same microscopic 
structure is absorbed into a renormalized parameter. The calculation of the 
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three correlation functions allows for cross-checks of the renormalizability 
assumption. This does not prove one-loop renormalizability in the strict 
mathematical sense, but having the information of our calculation, it is 
hardly imaginable how a strict proof could fail. 

The upper critical dimension necessarily is 4, since polymer statics 
with the upper critical dimension 4 must be contained in the dynamic 
theory as a closed substructure. Polymer statics has the two relevant 
parameters S and u. Another closed renormalizable substructure, the ter- 
nary polymer system, could be identified by appropriate limits and map- 
pings. ~2~ This substructure contains three of the four relevant parameters, 
namely S, w := u - v ,  and v. No information about the truly dynamic 
parameter F can be gained from any transformations or mappings. It is 
therefore most reassuring that all three distribution functions give an inde- 
pendent and identical result on the renormalization of F. 

Consider an arbitrary model in a high-dimensional parameter space 
on the truly microscopic scale. Renormalizability implies that this 
microscopic theory can be replaced by a different one on an intermediate 
length scale, which, if the scale is chosen sufficiently large, can be 
parametrized by only few relevant parameters. These relevant parameters 
span the low-dimensional distinguished manifold ~#. The integration of the 
RG flow of the relevant parameters within J / y i e l d s  universal results. At a 
fixed point of the couplings this universal result would take the form of an 
anomalous power law. We evaluate the theory at the fixed point w* of the 
effective static coupling w = u -  v. The coupling v, however, does not have 
a perturbatively reachable, stable fixed point. Integrating the RG flow of 
the parameters not at a fixed point, but within the attractive manifold J / ,  
we find universal nonlinear scaling laws. One can identify certain combina- 
tions of the parameters as the scaling variables. Then the general structure 
of the scaling laws and the concrete results of first-order perturbation 
theory can be discussed. 

This technical basis allows us to investigate universal laws for various 
physical quantities. Here we have concentrated on the mean square diffusion 
length of the center of mass and its long-time asymptotics, i.e., the diffusion 
constant D of a chain. As discussed above, we do not derive a simple power 
law in the chain length N, but Dcc N-J~(6(NVl) ,  e). In the limit of 6(1) ,~ 1 
and N>> 1, t~(_~"l) is a unique function of ~(l )N ~, and to lowest order 
6(NVl) oc 6(l) N ~. The quenched local potentials correct the Rouse predic- 
tion D oc N-~ by a factor which is a function only of the renormalized dis- 
order coupling 6(N"l) evaluated on the scale of the whole chain NVl. It 
should be compared with the standard reptation result D oc N- ' - ,  which 
models a Rouse dynamics including topological constraints. (Note that the 
effect of both, local random potentials and topological constraints, cannot 
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simply be accounted for by multiplying our result on D by an additional 
factor of N - k )  If ~(NVl) is sufficiently large, we would expect our random 
potential diffusion constant to decrease faster than N -2. This would mean 
that for sufficiently long chains asymptotically the effect of entropic traps 
or random potentials always would dominate over that of topological con- 
straints as accounted for in reptation models. Unfortunately, our one-loop 
calculation does not give sufficient information on the functions for large 
~(NVl) to decide that question. On the other hand, the functional form of 
our result and its evaluation to lowest order in the renormalized coupling 
reproduces Machta's saddle point approximation. The diffusion constant 
calculated in Machta's approximation clearly dominates over reptation. 

Our predictions demand an experimental or numerical test. A numeri- 
cal test allows for easier discrimination of physical mechanisms. The long- 
time asymptotics of long chains averaged over quenched disorder, however, 
is hard to simulate. We therefore also calculated the short-time asymptotics 
of the center-of-mass motion and compared it to Monte Carlo simulations. 
We will report on the results in a forthcoming paper. ~2~ 

A P P E N D I X  A. R E P R E S E N T A T I O N S  OF THE F U N C T I O N S  
Go(t) A N D  Du(t) 

Here we derive the long- and the short-time asymptotics of the segment 
Green function G,j(t), (3.40), 

N--I  

Gu(t) = (r0,(t + to) rj~,(to))o = ~ O~iOkjGk(t) (A.1) 
k = 0  

and of the distance function D,~(t), (4.14) ( i , j~  { I, 2 ..... N} ), 

1 " G"(O)+G~(O)-2Gu( t )  (A.2) 
Do.(t) = ~ ( (ro,(t + to) - ry~,(to))-) o - 2 

Evaluating the last expression in (A.1) with the results (3.22), (3.27), 
(3.28), and (3.31), the discrete chain Green function emerges as 

Go(t ) = ~2 e - r  I,I/r 

12 A t -  I COS(2(~k(i __ j ) )  + COS(2f~k(i .~_j - -  1 ))  

• e - 2 y  Itl/-2 sin 2 ~bk (A.3) 
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We use the abbreviations 

nk and / .  = 7__ = 9 (A.4) 
~bk = 2---N N S 

For t=0 ,  the k sum can be evaluated exactly by induction in l i - j l ,  
l i + j -  11 =0,  1 ..... It yields 

Go-(O):C2+NI2[2(N-li-jI'I 2 , ,  2~ j .-i-2\.f/N-li-i-j-ll.)2 1 6~., } ~  3 (a.5) 

By means of (A.2) and (A.5), Du(0) turns out to be identical to 

Do(O) = l i - j l  1"----Is,-sjl (A.6) 

This is the well known result of the noninteracting (u =0) static theory, 
which also can be derived directly from Eq. (2.1). 

In contrast to Eqs. (A.5) and (A.6), the t 5 0  contributions cannot be 
evaluated analytically in closed form. To simplify the analysis we take the 
continuous chain limit, first reconsidering the t = 0  contributions: In the 
limit N--* oo, /--* 0, and S = N I  2 fixed, we replace 

sin-' r = sin" /- 2-S =14 \2S) (A.7) 

assuming that the eigenmodes k with k12= C(S) essentially do not con- 
tribute to the large-scale properties of interest. With this approximation the 
k sum in (A.3) reduces for t = 0  to the tabulated Fourier sum 

~ cosnks, , /S ( S - s , , ~  2 11 (A.8) 
k= l n'-k 2 - \ 2S ] 

s,,,=ml2e[O, 2S] is a continuous chain variable. The result for G,7(0), 
including the estimate of the error due to the continuous chain limit, reads 

Go.(O) = r + S c  u _ I s , -  s j l  + (9(12) (A.9) 

with the abbreviation 

1 / 2 s ; -  S'~ 2 f 2 s j -  S'~'- ~ ~< c/j ~< 2 
+t, 2 s  ) '  7 

For D~(0), Eq. (A.6) is reproduced exactly. 

(A.10) 
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Now, we analyze the time-dependent part. Equations (A.2) and (A.3) 
yield 

/5~j(t) := Do.(t) - Do(O) = -Go.(t) + G~j(O) 
=~2(1- -e - rH/r  (A.I1) 

with 

1 %1  COS2mq~k 
a , ( m ) = ~ k = l  sin2tb k (1--e-2~' 

Itl/-2 sin2 41k) 

N--I  
fl,I T d r  ~. COS2m~bke_2,,~/__, i,.,~k (A.12) 
~0 T k =  1 

/" is defined in (A.4). In (4.10), 2dF Itl was determined as the free (v=  0) 
mean square displacement of the center of mass of a polymer within time 
t. The quantity 2dS is the mean square end-to-end distance of the nonin- 
teracting chain ( u = 0  =v). Consider now the exponent of (A.12) in the 
continuous chain limit: 

. , k 2 
2~,r . , 2 S ~-- 14 ' 

= (A.13) ~_ sin- Ck 2~_5 ~(1/, 
k =  d~(N) �9 l 4 

For ~r~> ~o(14) the approximation (A.7) is justified, because the contribu- 
tions of the modes with k = 60(N) are exponentially suppressed. Taking the 
continuous chain limit, (A.12) takes the form 

~:'"/Sdf ~ s,, a,(m) = cos nk ~- e -(~-'/2)k2f (A. 14) 
k = l  

(We thus exclude the microscopic time scale ~r ,~ (,9(l 4) together with the 
microscopic length scale I from our analysis.) The function (A.14) depends 
only on the dimensionless time 

T:=Fl t l=~l t l  Ylt[ 
S $2 - NZl2 (A.15) 

and on the segments measured on the scale of the whole chain s,,/S = m/N. 
For T~>(9(1) the temporal integral can be evaluated to give back a 

form of the structure (A.3) 

~ cos(nks,,/S) e_l,,_/,_~k2r) 
a,(m) = n~_k2/2 (1 - (A.16) 

k = l  
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The first par t  of the sum is the t = 0  contr ibut ion [Eq. (A.8)]. The 
T-dependent par t  of  the k sum for T>~ (9(1) converges quickly due to the 
exponential  suppression of the terms with k2T,> 1. 

For  T ~  1, however,  (A.16) cannot  easily evaluated. In particular,  an 
expansion in powers of T does not exist. Here the Poisson sum formula is 
useful 

+ ~  + o O  + o O  

,~ , . ~ E e 2 n i k v  e - n 2 k 2 '  E e - n -k - t  + 2 m k x  ~ dk + 2n ikx  

k =  --oo - -oo v =  --c~ 

+~ 1 e -('" + ")"I' ( A . 1 7 )  
= ~ (~Zt)l/2 

since it allows us to evaluate (A.14) as 

- 712 a,(m) = T + (2rcr) i/2 e -(2, +.,.,,,is)2/2r 
v ~ -- orj 

- f+(2r) ' , :  +o5 = X g \  ~ - ~  j (A.18) 
v =  - - o 5  

with 

ds e -r'/5" = lYl art e - '2  ( A . 1 9 )  
g(Y) = 2(m)  u2 .,,I 

e - 

= ~ + y e r f y - l y h  (A.20) 

e f - m y ' r ( , , +  U2) 
= - ~  " ~ (A.21) WT,,:, t T )  

F(x)  is the F function and erf denotes the error function 

erf x e , = = - -  dt e f t ( - x )  = - e r f x ,  err oo 1 (A.22) 

Since the function g(y)  will be central for the further calculation, we list 
some of its properties: 

1 
g ( - - y )  = g(y) ,  0 = g( oo)<~ g(y )  <<, g(0) = ,/'~n (A.23) 

g(y)  = (9 for lYi >> 1, 0 l y ~  -=  
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Using (A.24), it is found that contributions in (A.18) with 

2v + s,,/S 12vS + s,, 

decay exponentially. Accordingly, for T,~ 1 only few terms of the v sum 
contribute. For T >  1 or for T <  1 we thus use Eq. (A.16) or Eq. (A.18), 
respectively. 

Returning now to the evaluation of the functions Ge(t) and De(t), the 
following relation holds in the continuous chain limit due to (A.2), (A.9) 
and (A.10): 

Ge(t ) = #2 + Sc e _ De(t ) (A.25) 

Emphasis from here on will be laid on the evaluation of De(t). 
For T >  1, Eqs. (A.6), (A.8), (A.10), (A.11), and (A.16) yield 

Do(t ) =~2 (1 - e  - r  I'1/r + Sc e 

cos n k - - - - - ~ ) + c o s  nk (A.26) 

As was to be expected, De(t) for T >  1 approaches [cf. (4.6), (4.7)] 

De(t ) = #2 ( 1 - e - r  m/c-') + (o( S) 

=�89 (A.27) 

i.e., the distance of the segments at large times t is dominated by the dis- 
tance the center of mass has diffused. 

For T,~ 1, Eqs. (A.6), (A.11) and (A.18) yield 

D e( t ) = lsi-  sj, + 6~ ( XT2 ~ ) 

[ (si-sj+2vS'~ (si+sj+2vS'~] 
+(2~ Itl) |/2 

-- g \  (2Pltl) '/2 J + g \  - ~ { ~  JJ 
(A.28) 

v ~ - - r  

The contribution of the center-of-mass motion k = 0 vanishes up to the 
correction of the order given above. 

On physical grounds [cf. (A.2)] we expect De(t) to grow 
monotonously with t. For T~< (9(1) and ~2>> S this can be verified by, e.g., 
inserting the first line of (A.18) into (A.11) and taking the temporal 
derivative. For T~> (9(1) the same can be derived from the derivative of 
(A.27). So 

ODe(t) ~.j . . . . .  , 
0 Itl > 0  for t:/:0 (A.29) 
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Inserting the last equation of (A.24) in (A.28), it is straightforward to 
derive 

ODu(t) I > 0 
0 I(s~- SI2) -t- ( s j -  S/2)11 I(s,-Sl2)-" l~j-Sl2)l. I'1 . . . . .  t 

(A.30) 

for (s~-S/2)4-(s j -S/2)v~O and t:/:0. The chain parameter s i - S / 2  
appears for symmetry reasons, since both ends of the chain s~ = 0, S are 
indistinguishable. 

Using (A.2) or (A.6), we furthermore find 

Do.(t)>O for i r 1 6 2  and D,.;(0)=0 (A.31) 

We conclude, that Do.(t) is monotonously growing in each one of the 
variables Itl, Is,-sjl ,  and Is~+sj-SI starting from D , ( 0 ) = 0 .  

The short time behavior can be further approximated by [cf. (A.24), 
(A.28)] 

si--sj 

+ (0(ITI e -~/~2 Iri))] 

+ g " ( - f ~ , ]  
('s; + sj - 2S'~ 

+ g \  (--~ ~ J 

(A.32) 

The two g functions represent the chain end contributions, while 

f (Y)  = g(Y) + lYl (A.33) 

is the contribution which is independent of chain length. 
In the limit of infinite chain length S--+ 0% Do,(t ) reduces to 

t ~l/2 #'( si~sL "~ (A.34) 
D~s(t)s_o~=(2~ , J \ (2Pl t l )12J  

This reduced functional dependence Do.(t)s~ o~ was derived previously by 
de Gennes (~7) and was used by Martinez-Mekler and Moore (~~ in their 
calculation. Foi ~ T--+ 0 we find 

lim ~ Du( t) 
~,.~j . . . . .  , (2~ ]tl)~12f((s,--sj)/(2p Itl) v2) = 1 

for almost all si, sj (A.35) 

822/82/I-2-16 
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Some useful representations off(y)  are 

e -~a 1 [l~,t 
f (y)=---~+ yerf y=--+~ ~o drerfz (A.36) 

= 9 ~ 1 7 6  +t,  e - ? =  (1 + ~ (2 f ' "  ") (A.37, 
J ~ -  ~ \ . = l  (212-  1)!!J 

It obeys the relations 

f ( - y )  = f(y), 

f(Y) lim 1, 

~ =f(0)  <~f(y) <<.-~n+ lYl (A.38) 

Of(y) erfly[ >~0, ( 1 - - y - ~ y ) f ( y ) = e ~  

2f(y) -- 2yf'(y) -- f"(y) = 0 

For further convenience the functional dependence of the full distance 
function Do(t) is summarized in the notation 

F{" si--sL si+sj 2S ) 
Du(t) =(29 Itl) ~/2 \(29 itl),/z, (29 Itl) ~/2' ( 2 f ~ )  u2 

for (29 [tl)~/2'~ 2 (A.40) 

with 

as a convenient form for 2 = (2/T)~/2>~ (9(1 

[1 z y2 + z2" 
F(Y,Z, 2 ) = I + 2 ~ - - ~ + ~  

F(y,z, 2)=lyl+ ~ (g(y+v2)+g(z+v2)) (A.41) 

and ~z ,> S, and 

- ~ cos + cos (A.42) 
k = l  

for (S1~2) 1/2 ,~ 2 = (2IT) 1/2 <~ (9(1). 
F(y, z, 2) has the following useful summetries: 

F(y,z, 2)=F(-y ,z ,  2)=F(y, --z, 2)=F(y,z+ 2,2) (A.43) 
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(A.42) seems to violate the last symmetry in (A.43); however see the restric- 
tion to y e  [ -2 /2 ,  2/2], z e  [0, 2] of the derivation of (A.8), which is used 
in (A.42). 

Due to (A.41), (A.33), (A.23), and (A.38), the inequality 

1 
F(y, z, 2) >~ f(y)  >1 , -  (A.44) 

is valid for all y, z and 2. 
The factorization of Do.U) as in (A.40) is very convenient for calcula- 

tions at T,~ 1. For actual evaluations in the case of T,> 1 it is, however, 
more appropriate to rewrite Do(t) in the form of (A.26) with the dimen- 
sionless system size =--'= ~2/S: 

I (2 s +sj .,+s,) D•(t)=S S 2 ( 1 - e - r / - - ' ) +  5 +  $2 - S 

_ 2 nk(Si+s sj))]  (A.45) 

Here S is factorized out instead of a factor of (2)9 Itl) 1/2. 

A P P E N D I X  B. THE �9 POLES OF ~cm(q, t) 

Here the divergencies of cffcm(q, t)o+l, (4.15), are determined. The 
expression is given for t ~> 0 by 

~.,(q. t)o+ I 

= exp[ - q2~2( 1 -- e -  r,/r ] 

x .  ^ " ' (exp F(-~2 r)) Io - - - ~  Dij(r}-3+'/'- [ l + v q_ fl F d r - _ S ds, ds, 

~ - ~  ( q ' - s C 2 ( t ,  r, r ' ) ,  q2 j2( t ,  r, r ')] 
x Fdr' 1+  2Do.(r ) ) e x p  ~ j (B.1) 

with e - - -4 -d ,  with Do(t} from Appendix A and with 

d ( t ,  r, r ' )=~2  (1 --e - r~/r (e-relr . . . .  ')/r (B.2) 
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In the limit 1"t/~2~ 0 of small times or infinite volume, (B.1) reduces to 

lim gem(q, t)o+l 
Ft/~,  2 ~ 0 

=e-q2r' I I + O q2 f~ l-'dr lS ~ 'D~ j ( z )  -3+~/2 

x r ( t - r )  ( I  + 2q2(Fr)2~eq'-w*"/~ / (B.3) 

e poles can only originate from zeros of Du(r) in (B.3). Due to the 
representation (A.40) of D0.(r) and the inequality (A.44), the zero can only 
be hidden in the factor (2~r) m. The variables (si-sj) and (si+sj) 
obviously play different roles, as one sees, e.g., in (A.35). Therefore the sub- 
stitution is also done in an asymmetric way as y =  [si-s:[/(2~z) t/2 and 
m = si + sj. Making further use of (A.43) and expanding the last exponent 
in (B.1), resp. (B.3), we can write ~cm(q, t)0+| for Ft<~6o(S)~ 2 as 

~r t)0+t 

t ~ \-~5/ -~ dm 
n = O  

x .o dy (2fz)~-2+"/2+3")/2F y, (2~-~-)1/2, (2~-~1/2 

(B.4) 

For d~<4 a divergence of (B.4) only can originate from the n = 0  term, 
which contributes an e pole. All other expressions are finite. The pole can 
be evaluated as 

~ lf~S f,,/t2:T,:- ( m Fdr~ dm ~o dy(2~r)-l+"/4F Y' (2~r) 

- -  1 ~29t +e/4 f s  dm fm/,/7 ( m 2S'~-3+~'2 
- 4 J o  d f f - '  ~o S Jo dyF y,~__//~,~j 

-- (2~t)~/4 dyf(y)-3 +~/2 + reg(e) 
8 

I ( 2 ~ t ) ,/a 
- - -  + reg(e) 

8 
(B.5) 



Polymer Diffusion in Quenched Disorder 247 

where reg(e) denotes the regular contribution in e in a consistent e expan- 
sion, and 

I= Io  dy f (y ) -3  = 3.587 (B.6) 

The number 3.587 is derived by numerical integration of the function f (y) ,  
(A.36). 

The e pole (B.5) is independent of t as long as t>0 .  It can be traced 
back to the short-time singularity of Du(t). Since ~(y) asymptotically 
approaches lYl for lYl ~> 1 (A.39) and since f(0) = 1/x/n, the integral (B.6) 
is dominated by contributions of y =  [s~-sjl/(2~t)~/2<~(9(1). The e pole 
thus represents a short-segment-distance, short-time divergence. Chain end 
effects do not appear. 

Considering now (B.3) for T =  Ft/S>~ (0(1), we note that the interval 
of r integration also extends to Fr/S >>. 60(1). On the other hand, for 
T= 6~( 1 ), i.e., 2 = ~( 1 ), the behavior of Do.(t) changes drastically and a dif- 
ferent representation needs to be chosen, as was discussed in Appendix A. 
We find 

lim ~cm(q, t)o+l 
F / / ~  2 ~ 0 

=e-q2r'[l+Oq2Ft(I-(min{(2pt--)e l/2'S})"/2+reg(e))] (B.7) 

Let us finally analyze the integrals for ~ < oo. From (B.1) for Ft = (9(42) we 
derive after splitting again the r integration into the parts with Fr/S < 1 
and Fr/S> 1 and using (A.40), resp. (A.45), that 

f~cm( q' t )o + l = fgr q' t )o [ l + u q~-Ft e - r'/C- ( I S~/2 )1 + reg(e) (B.8) 

for Ft/S > 1 

(B.7) and (B.8) together yield (4.32). 

A P P E N D I X  C. THE TREE A P P R O X I M A T I O N  FOR ~Jlz(q, t )  

The tree approximation for ffl2(q, t) is given by the first order of 
perturbation theory for (5.6). It is evaluated by means of Eqs. (5.2)-(5.5). 
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The function is a cumulant, therefore there are no disconnected 
diagrams. Dealing with only one coupling in the tree approximation, this 
coupling must act between the chains. Therefore the summation �89 Zr  2, r'=' 
over the chain indices in .r (5.3), can be replaced by ~ I ( I ) ,  

1 2 2 

Z ( 1 - - J . , ) =  Z I~rll~r'2 
r,r' = I r,r' = I 

The evaluation of (5.6) then yields to first order in the couplings 

(#12(q, t -- t')l 

= - - f p ' "  ~ ,  I~176 7dt, ydt2 
i , j=  1 --co 

• { u J ( q - t 2 )  [~(i ,  l ,p ,  t~) +~.(.L 2, - p ,  t2)] 

- v(p) ~( i ,  1, p, t~) ~(.L 2, - p ,  t2)} 

t (r) t xexp - drdr' Z ~" ~. h~,~,)(r),,,Go.(r-z)hj,,(r),,, 
r = l  i , j = l  I t = l  

(c.1) 

with the fields 

{r) hu,(r)(1)=h(,~j)(rI(o)+p,,(O,iOrlO(r-t])-~,j~r2O(r-t2)) (C.2) 

The response operators are 

and 

N 

~ ( i , l , p , t ~ ) =  Pq ~ iR, i ( t - t l )+p2iRu(O) 

OGo(t- t l )  Pq - t~) 
= - ~  O( t ~ Ot ~ (C.3) 

~( j ,  2, - p ,  t2) Pq O(t' - t2) OG~ - t2) (C.4) 
= --N ? Ot,_ 

For the last line of (C.3), Eqs. (3.38), (3.41), and (4.12) have been used. 
The exponential of (C.1) with (r) h,~, (r)(i) from (C.2) takes the form 
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-- hi, (Z)(l) G/j(z-  z') hju (r)(t) exp g & a t '  F~ Y~ (~) (~ ' 
r = l  i , j = l  p = l  

exp {----~ Pq[Go(t--t,)+Go(t' -- t2) ] = Go(O) + 

P22 [G,,(0) + G~.(0)]} 

p2 (~2 + Scij)} = e x p  {__q2r "1- ~ [Go( t - - t l )+  Go( t ' - t 2 ) ] - - - f  (c .5)  

where (3.27), (3.31), (4.12), (A.9), and (A.10) have been used. 
In summary, after evaluating the 0- and 6-functions of the time 

variables, we have 

ff12(q, t -- t')l 

N 
= --e-q"~2 Ip ld ~ e-P"(~2+Sc~ 

i , j = l  

[ ( I '  pqOGo(t- t , )  " pqOGo(t'_--t])~ 
x u -o~dt] N Ot~ +f_~dt~  N Ot~ J 

x e (pq/N)(G~ - tl ) + Go(t' -- tl )) 

- v f'_odt, NPqOG~ f"~o d -  t2-~pqOG~ 

X e ( p q / N ) ( G O ( t - t l ) + G O ( t ' - t 2 ) ) ]  (C.6) 

The time integrals in the contribution proportional to v easily are 
evaluated. Making use of (4.12), 

Go(t ) = N~ 2 e - r  itt/r 2 

we find 

f ' dzpqOGo(t--z ) etpq/N)G0tt-~)=epqr 2 
_~ N 0z 

(c .7)  

A completely time-independent term results, as was to be expected. 
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The time dependence of the coefficient of u is more complicated. With 
t 1> t' some intermediate steps of the calculation are 

: = ( f '  O G o ( t - t ~ )  + f "  p q O G o ( t ' - t , ) )  "ft. dt ~ pq 
N 

X e ( p q / N ) (  Go( t - t I ) + Go( t '  - t i ) )  

0 ' O G o ( t -  tl 

Integrating the first term and symmetrizing the second by the substitution 
t - tl ~ tl - t', we find 

"flu = e { Pq /  N) (  G~ t - t' ) + G 0 ( 0 ) )  _ _  e 2 { p q / N )  G0(oo ) 

f '  pq O ( G o ( t -  t l )  - Go(t1 - t ' ))  e(pq/N)(GO(t_n)+GOtt I -t ')) 
+ , dt ,  - ~  20t-1 

Insertion of Eq. (4.12) yields 

J .  = exp[pq #2(1 + e-rl ' -"l/r  

f 
.r" It - -  t ' [ / 1 2 ~  2) 

+ dr k cosh r e (k cosh r) (C.8) 
~ 0  

where 

k = 2pq ~2 e-r l ' - t ' l / r  2 

In the limit of large ~ we find 

( ( F l t - t " ) 2 )  Ju=e2pqr + p q F l t - t ' [ ) + ( 9  pq ~2 (C.9) 

Inserting these results into (C.6) results in 

ddp l a .,( ., _p,S~ o 
c f f 1 2 ( q , t ) l = j ' - - e - r  ~ e 

(27r) d 
i , j = l  

X[v--ue-Pqrlt'(1 +pqF]ll)+O(upq~) 1 
N 

= ~-a  (4n) --all2 I d E e --q2Sc/J 
i , j =  1 

x[v-ue-q2rl'1(l+q2FJt[)+(P(g~,uq2(Ft)2"~l _ #2 /j  (C.lO) 
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The last expression is evaluated for S,~ ~2 a n d / "  Itl ~ ~2. Here tP(g) means 
~(u) + V(v). 

APPENDIX D. THE ONE-LOOP D IAGRAMS FOR ~Jlz(q, t) 

Here we outline the derivation of the expressions (5.11)-(5.13) for 
fC,2(q, t)2 from Eqs. (5.2)-(5.6). 

ff~z(q, t)2 is defined as the second order of perturbation theory for the 
function defined in Eq. (5.6). The diagrams have two interaction lines and 
the two chains are connected by at least one interaction. Accordingly, they 
can be grouped into two diagram classes, the 3 + 1 and the 2 + 2 diagrams, 
as defined before and at Eq. (5.11 ). 

The 3 + 1 diagrams will be considered first. They have three interact- 
ing segments on one chain and one on the other. Due to the invariance of 
the observables under renumbering the chains and under q --, - q  (isotropy 
of space after ensemble averaging), one can reduce the diagrams to those 
with three interacting segments on chain no. 1 and one on chain no. 2. The 
second set of diagrams then simply can be derived by exchange t *-* t'. One 
then, however, is not allowed to fix the sign of t - t ' .  

There are two interactions a =  1, 2 in (5.2). Fixing a =  1 as the self- 
interaction of chain no. 1 and a = 2 as the interaction between the two 
chains, a factor of 2 is gained. Then t~ >1 t'~ yields another factor of 2 as a 
coefficient of v in the o- = 1 interaction. Fixing r 2 = I and r" = 2 in the a = 2 
interaction results in another factor of 2. The 3 + 1 diagrams thus are 

g(q, t -  t')13+l~ 
N 

= f 12a ~ I ?4 dtl dt'l dt2 dt'~ 
op 1.p2 i , j , k , l =  1 " --o~ 

x - - [ ~ ( 1 ,  i, p l , t l ) + ~ ( 1 ,  j , - p l , t ' l ) ]  
Y 

--V 0( t  1 - - t ' l )  ~ ( 1 ,  i, P l ,  t l )  ~(1,j ,  --Pl, t'l)} 

{ ~(tz-- t ; )  
x u - -  [N( l ,  k, p2, t2)+N(2,  l, - P 2 ,  t~_)] 

? 

- v  N(1, k, p,., t2)N(2, l, -P2 ,  t ' )}  

xexp dr dr' ~ ~ c~ - r '  ~(r')~2) - h ,~  (r)~21 6o.(r ) hJ.~ 
r = l  i , j = l  

+ ( t ,--* t') (D.1) 
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with the fields 

{r~ _ ( q ,  h,~, (z)~2 ~ - -  ( ~ r l  - -  ~ 6(Z -- t) + pb , ( f , i J ( r  -- t~) - - 6 j 6 ( r  -- t'l)) \ 

+p2~,J,k6(r -- t,_)) 

( q,, ) + Jr2 \V/- ~ -- t') --p2, ,6, ,J(r  -- t~) (D.2) 

Inserting these fields, we obtain the exponential function in (D. 1) as 

( 1~ 2 N ) 
- -  hit, (r)~2~ G O ( r -  ) h~  

r = l  i , j = l  

= exp[ _~2(q + p,_)2 _ p~_SG~- p~mo( t t  - t',)] 

x e x p  { -  ~ - ~ [ G o ( t - t ' , ) - G o ( t - t , ) ] }  

x e x p  { -  P - - - ~ [ 2 G o ( O ) - G o ( t - t 2 ) - G o ( t ' - t ; ) ] }  

x exp{ - p ,  p2[ G;k(t, -- t,_) -- a/t(t'~ - t~_)] } (D.3) 

Exactly as in the tree approximation (C.10), a factor exp[-~- ' (q+p_,)2]  
appears. For any functionf(p2) which can be expanded in P2, the following 
identity holds: 

dap2 ( / x f ( q )  ) 4 '2f(q) f -- '~2(q + p2)2 ? - -  j ( -~n)a e f ( p _ ) - ( 4 n C - ) - d / 2 f ( q )  1 4 b .-. (D.4) 

As long as the quadratic length f ( q ) / A f ( q )  is much smaller than ~2, 
exp[ _(2(q  + P2)-'] can be replaced by (rr/~") d/'- 6d(q + P2) with an error of 
the order of [ A f ( q ) ] / [ C - f ( q ) ] .  

The response factors are 

~(1, i, p , ,  tl) P~q i R o ( t _ t l  ) 2. , = -- Pi tRij(tl  - t l)  + plp~iRi~(t~ -- t l)  
N - - 

3~(1,j, - P l ,  t'l) ~ ~  i R o ( t -  t'l) 2. = ~  -- Pl tR j i (  t l  - -  t |)  - - p l p 2 i R j k ( t  2 --/ ' t)  

(D.5) 
~.(1, k, p~, t2) = --P-~q iRo(t - t2) - p, P2 [ iRk~(tt -- t2) -- iRej(t'l -- t2)] 

- N 

.~(2, l, -P2 ,  t~,) = PN q i R o ( t ' -  t~) 
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Obviously the structure of  the second chain is much  easier. If  
~ (2 ,  l , - P 2 ,  t~) appears  with a v interaction, the t" dependence can be 
exactly integrated out to 

foo 7 dt',_ ,~(2,/ ,  - P 2 ,  t~_) e = - e (D.6) ~ ~ p ~ N ~  G0~ 0 ~ 6 o (  t "  - -  ~ p ~ q ~ 2  ! 
--oo 

Equation (D.4) cannot directly be applied to the correction exp(-pzq~ 2) 
in {D.6) because it contains the scale ~. If inserted on the left-hand side of 
(D.4) for f (p2) ,  however,  it vanishes like exp( -~q ' -{ - ' )  for Iql- '  "~ g. It  thus 
can be neglected together with the other corrections on the right-hand side 
of (D.4). 

We now decompose g(q, t)(3 + ~) into 

g(q,/)(3+11 = g ( q ,  t)(3+l,;)+g(q, t)(3+l..o) 

+ g ( q ,  t)(3 + i. o,,) + g ( q ,  t)3+ I,,#) (D.7) 

Omit t ing further details of  the calculation, we find as the simplest term in 
the limit of  large {. 

=-v'-( l ' -V":f  t" " 

g(q't--t')'3+";) \4n~2J Jm ~ e-q"s"k'-P~n~(~ 
i , j , k , l =  I 

g cr~ 

XJo dT~ e -p lq (G 'k ( r ) -G j t ( r ) )  

= -~=  \ a - s  ,~ I "  y_, e-"-s~"-~"~ '~ 
i , j , k , l =  I 

x ( 1 -- e -  pq( a,k(o)- oil(oil) (D.8) 

The time dependence is here completely integrated out. Note  that  in (D.8) 
the evaluation of  the time integral at r =  - m  contributes a 1, which is 
essential for the further calculation. In contrast the evaluation of  the time 
integral at r =  - o o  did not contribute in (D.6). 

If u acts between the chains and v within one chain, one finds 

g(q, t - t ' ) t 3  + L vu) 

( 12 ,~,,/'-fl ~ . 

= vu t,4-s ,,> E e -q'*<~'-~-''-''-''' 
i , j , k , l =  I 

x [ ( 1 + q- 'F It - t '[) e - p'-D0ml( 1 - e -pq~a,k{o)- oj,.I 0))) 
/ 
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I i  - ' q  dr"  - r '  r " )  OpqGjk(r') + 2  F3 d'c d'c ' O ( I t - t ' ] - r  _ q2(pq)  FOr' 

x e - p'-or T} - pql a~  ~ + ~'~ - aj~{ ~'1 - rTq (D.9)  

I f  the self- interact ion of  a cha in  is via u, the fac tor  a ( t ~ - t ' ,  ) facil i tates 
the eva lua t ion  of  the different t ime orders  and  

g(q,  t - t')r + I, ,,v~ + g(q,  t --  t '  )13 + 1. ,,-'~ 

= u  ( v -  u(1 + qZF I t - -  t ' l )  e -q'-rlt-t'l) 

(12~ ,1 /2 .  N 
Jr" E 

i,j, ka=t (D.IO)  

After  pe r fo rming  the p in tegra t ion ,  ( D . 7 ) - ( D . 1 0 )  yield Eq. (5.12). 

We now proceed  to the 2 + 2 d iagrams .  T h e y  have  b o t h  in te rac t ions  
ac t ing  be tween  b o t h  chains.  F ix ing  rt  = 1, r'l = 2, r_, = 1 and  r~ = 2 yields a 
factor  o f  4 in the vo-I  (5.3). Explici t ly  one  then  derives  ~ l { o - p  

N oc 

g(q '  t - t ' ) l z + 2 ~ = 2  ~.p2 i.j.k,t=l -'~ - - 

c~(tt _ t,l) 
x U - - [ . ~ l ( 1 ,  i, p l , t~ )+ .Y / (2 , j , - -p~ , t ] )  ] 

Y 

.~.(1, i, P l ,  t l )  ~ ( 2 , j ,  - - P l ,  t ] )}  ~ V 

6 ( t , - t ' )  
x u - - [N(1 ,k ,  p2, t ,_)+~(2, l , - p , _ , t ; ) ]  

Y 

- v 8 (  1, k, p,_, t2) ~t(2, l, - P 2 ,  t'2)} 

x exp[  _ ~ 2 ( q _  Pt - P2) 2 - (Pl + P2)(PJ Sou + Pzgckl)] 

x e x p  { -  ~-~  [ 2 G o ( O ) - G o ( t - t , ) - G o ( t ' - t ' , ) ]  } 

xexp  { -  ~ - - ~ [ 2 G o ( O ) - G o ( t - t 2 ) - G o ( t ' - t ' ~ ) ] }  

• e x p { p ,  p2[D~k(t,  -- t2) + Dj~(t'~ -- t~_)] } (D.11)  



Polymer Diffusion in Quenched Disorder 255 

The coefficient of ~2 again can be evaluated as a J-function just as in (D.4) 
if ~ is much larger than all other length scales. Here we find 

exp[ _ ~ 2 ( q _  Pl - P 2 )  2] ~ (n/~2) d/2 j d ( q _  Pi -- P2) (D.12) 

The response factors are 

~t(1, i, p~, t,) = - - -  

~(2 , j ,  - -p , ,  t ' , )= - - -  

P'q  iRo( t - - t l )+p lp2 iR ik ( t2 - - t , )  
N 

Pl q 
iRo( t' - t'~ ) + p, p2iRit( t'2 - t'~) 

N 

(D.13) 

with 

.Yl(1, k, p2, t z )= P2q iRo ( t - t 2 )  
N 

due to 0 (0)=0 ,  (3.38). In this case only ~(1, i, p, ,  t,) and the exponential 
depend on t~. Therefore the latter response factor can be written as 

~(1 i , p , , t l ) -  P ' q i K o ( t , - t ) + p , p 2 i K ~ k ( t l - t 2 ) + ~ - 7 -  ~ (D.14) 
' N otl 

Ro(r) = 0(r) 0Go(r) 0(0) = 1, etc. 
iy Or ' 

i.e. Ro(r) and Ro(r) are identical with Ro(r) and Ru(r) except for the value 
of the 0-function at r = 0 .  The derivative O/at, in (D.14) acts on the 
exponential and allows for partial integrations in t~. 

The four types of 2 + 2 diagrams are now treated separately according 
to the couplings appearing, in close analogy to the 3 + 1 diagrams, (D.7). 

The time dependence of the v 2 terms can be completely integrated out 
to yield 

g(q,,t - t')12 + 2. :1 

v2 ( 12 ~d/2 fp 
--- 2 \ 4 - ~ J  le(2zr)e J a ( q - P t - P 2 )  

I, P2 

N 

x ~ e I --PlqScij--P2qSckI+PlP2[D#c(OJ+Dfl{O)]} (D.15) 
i , j , k . l ~  1 

with the two others found by exchanging indices 1 *-. 2, i ~ k, and j ~ I. 
As previously, partial integrations in time can be performed to simplify 

the expressions: Suppose that for the two interactions of the first chain 
t~ <~ t2 holds. Then 



256 Ebe~ 

Just as in (D.8), the t dependence is completely lost. This is easily under- 
stood, since for u = 0 the chains interpenetrate freely. The v contributions 
originate from correlations of the centers of mass due to the quenched ran- 
dom potentials. These correlations are necessarily time independent. 

The u-" term becomes 

g(q, t - -  I ' ) ( 2  + 2.  u 2) 

=.2f  r- ld(2rc)d ~d(q--pl 
~ p 2 ) 2 \ 4 ~ 2 J  Jp,,p., 

N 
X 2 e--PlqSco--P2qSckl--q2Flt--t ' l  

i , j ,k , l= 1 

• I ( 1 + q2F It - t'l) e m mrD'km) + Dj~(~ 

+ 2(pN)(p2q) F d r F ( l t - - t ' l - - r ) e  p~ p~ED~(*) + Dj~m] 

(D.16) 

The uv term is again the most complicated one. It finally "reduces" to 

g(q, t - t')(2 +2. . . )+g(q,  t - t')~2+z..,,) 
( 1 2 " ~  "/z 

= --uv \4~z{2 j "pf, p' la(2n)dad(q--p, --p=) 

N 
X Z e - P lqsco  - P2qSck/-- q 2 r  It -- t'] 

i . j .k . l~  1 

x [ ( 1 + q2F It - t'l) e mm(~176176176 

+ q2 f I, - ,q F dr F( It - t'l - r) (Pl q emqr~ + P,_ q eP"qr~) 
o 0  

X e plp-qD/~(r) + Djt(O)) 

1 F l t - t ' l  
+ 2 J o  F 2 d r d r ' O ( I t - t ' l - r - r ' ) [ - l + q 2 F ( I t - t ' l - r - r ' ) ]  

x [(Pl q)2 ep,qm+~') + (p,_q)2 ep,.qr~ + e)] 

X ePlp2tDik(r)+Djttr'D 1 (D.17) 

Equations (D. 15 )-( D. 17) yield the expression ( 5.13 ). 
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APPENDIX  E. THE �9 POLES OF ~Jla(q, t) 

Here we determine the e poles of the one-loop expression f#~2(q, t)2. 
This function consists of two parts [see (5.11)] 

(#l_,(q, 02 =g(q,  t)(3+ l)+g(q,  t)(2+2) 

g(q, t)l 3 + 1 ) is given in Eq. (5.12) and will be analyzed first. Skipping prefac- 
tors, we start by considering the part 

S 
sr = ~o dsi dsj dSk dsl e -q-'Sck, Di/(0) -d/2 

q2(G,k(0 ) -- 6jk(0))2"~ 
x (1 - e x p  ~ - - ~  -/ (E.1) 

In normalized segment coordinates i [cf. (5.16], with Eqs. (A.6), (A.9), and 
(A.10) inserted and with a Taylor expansion of the second exponential, d l  
becomes 

f 1/2 ~r = --$4-d/2 di dj dk d le  -Sq2(1/6 +k2+121 
- 1/2 

~ 1 (Sq2y  ' -2-,,+,/2 (i 2 _ j 2  ] i - k l + l j - k ] )  2"(E.2) x -- l i - j l  
n =  I 1I! \ 4 /  

The nth term of the expansion under the integral is proportional to 
l i - j l  --'+~+~/2. The integral is a generic one of polymer statics just like 
(4.25). For d = 4 - e < ~ 4  all terms with n>~2 are regular. Only the n =  1 
term contributes an e pole: 

( ) ~-,/-, di dj li -J1-3 +,/2 (i'- - j ' -  - li - kl + IJ - kl )'- = ~ 4  + 60(e) ~+4k-'l 

and the divergent part of ~'1 is explicitly 

f 1/2 2 + 6~ St/2S2 dk dl e -sq2(l/6 +k2+121 
-- I/2 

x [ - S q 2  ( l + k 2 + 1 2 ) J  (E.3) 

In (E.3) 2k 2 is replaced by k2-t-! 2 in the last factor, which is obviously 
allowed. 
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The next term to be analyzed in (5.12) is 

f d ~  = ds  i ds  : F 3 d r  dr '  d r "  O( t - r - r '  - r"  ) j d ap 
? ~ a : k (  "~ I ) 

- ~-~  (Pq)- F O r '  

x exp{ - p2Du(r) - pq[  G,k(~ + r ') -- G:k(r') -- Fz ]  } 

q2Is I~ _,, OG:k(r') 
=-~ as, as: ra~ r ( t - ~ - ~  j 

1 + 2 n  (q2"~" 
x .~o  ~ k.--4-) D~ -3 -,,+./2 [ Ggk(r + z') -- G:k(r') -- F r  ]'-" 

(E.4) 

In the last expression p is integrated out and the exponential is expanded. 
Divergencies in (E.4) can only originate from D i : ( r )  - 3 - n + ~ / 2 .  Due to the 
structure of D/:(z) as discussed in Appendix A, especially in Eqs. (A.40) 
and (A.44), a factor of (2~r) 1/2 can be factorized out of D0.(r) as the term 
causing divergencies. The rest of D~j(r) is finite, after the segments have 
been rescaled as 

y = (si  - s i ) / ( 2 ~ r )  1/'- (E.5) 

(The same has been done in Appendix B.) For  the evaluation of (E.4) one 
furthermore needs the r dependence of [ Gik(r + r ') -- Ggk(r') -- F r ] .  For  
F r / S , ~  1 it takes the form 

[ Gil<('r + ' r ' ) -G jk ( r ' ) -  Fr]  

= [ { Gjk(r + r ' ) -  G;~(r')} + { G,k(r')-- G:~(r')} - F r ]  

(E.6) 

The full term 

D0(r  ) - 3 - ,  +~/2[ Gik(Z + r ') -- G:k(r') -- F r ]  2,, 

in (E.4) for F r / S  ,~ 1 is thus proport ional  t o  (2)3"t) 3 +  . . . .  /2)/2. Another factor 
of (2;r)  u2 is gained by the substitution (E.5) of the segment coordinates. 
Therefore only the n = 0 term in (E.4) contributes an e pole and 
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q2 s t Gjk(~, ) ir F(t__T__7~t) 
sd2=-~ Io dSi Ii dr' Or--------~ jo 

f(S-ql/t2fr)U2 _2+,/2)/2 F ( y  ' 2sj 2S - -3  + e / 2  
x dy (2fr) t t-y, ~ )  

~-~d~2f~u-' (2~r)'/2 

+ reg(e) (E.7) 

The evaluation of the e pole proceeds now analogously to (B.5) and yields 
as a first step 

q2I; Io OGJk(r')F(t-r')4I+(9(e)(nfin{S2'2)'t})'/4(E'8) ~2=--~ dsj dr' Or' S e 

Making use of (4.12), one finds 

~ OGjk(r ' )  = _SFe_r~,/r dsj 0~' (E.9) 

and 

~-= --q2(Ft)Z (l  + (P (F~22)) I + O(e)e (min{ S 2, 2~t} )~/4 (E.lO) 

Using the equivalence (E.1)= (E.3) and (E.4) = (E.10), we derive Eq. (5.14) 
from (5.12). 

We now proceed to the analysis of the 2 + 2 diagrams as given in 
(5.13). There are four terms, of which only the first contributes an e pole. 

This first term g(q, 0(2 + 2. t~ reads, after integrating over p~ and P2 and 
in normalized segment coordinates, 

g(q, t)~z+ z l) 

dl  = ~ -  ~ [02 + (t~--2Z3) t~(1 + q2Ft) e -q'r ' ]  

• S 4-a/2 fu2 di dj dk dl 
~--  1/2 

X e --Sq2( 1/6 +i 2 +j2) (}i - kl + IJ - II) -d/2 

Sq2([i-k] + [ j - l [  + k 2 - i 2 + 1 2 - j 2 )  2 
xexp 4( ] i -k[  + ] j - l [ )  (E.11) 

822/82/I-2-17 
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The divergence appears for d~<4 if simultaneously l i - k l - - , 0  and 
IJ - !1 ~ 0. The expression in the last exponential is of order 
Sq- ' r  + I j -II) .  Again the leading term of the Taylor expansion of 
the exponential contributes the leading singularity. This leading term is 
here unity. The essential integration for deriving the e pole is 

fl/2 dk dl ( l i - k l  + IJ - I I )  -2+~/2 (E.12) 
8 + ~o(~) 

--  1/2 /~ 

and 

g(q, t)r + 2, l) = ~ -a[  132 + (t~ - 213) t~ ( 1 + qZFt) e --q2F/] 
1/2 S~/2 + (9(e ) 

x S 2 f di dj e -sq211/6 + 
i 2 + j21  

~ - -  I /2  '~ 

The second term on a level equivalent to (E. 11 ) reads 

g(q, t)(2+ 2,2) =~ -a d k d l e  
-- 2 

t q2 
• Ii d r ( t - r ) f , / 2  did j - -  

~- ,/2 2 

• [Dik(r) + Djl(r)] -a/2-l (Bq2 _ 1 

B2q 2 
x exp 

Oik(r) + Djt(r) 
with 

(E.13) 

n 2 q 2  

Dik( ~ -+--Dj,( r) ) 

(E.14) 

B = Dik(r) + Dj/(r) + k 2 - i 2 + 12 _j2 

Again the zeros of B are of the order of Dik(r)+Dj~(r). This implies that 
again the most divergent term is given by the lowest order of the Taylor 
expansion of the last exponential. The divergence of this term is due to the 
integral 

dz ( t - r )  didj [Dik(r)+Djt(r)] -l-a/2 
- 1/2 

I~ Jr -s~+ Sl2)/r s/2)/(2~.~r,t~ --S f (-st+ SI2'1r dYs 
= dr  ( t  - r )  j(_sl_Si2)l(2)~r)l ~ (2~r) ( - I  +~12)/2 

xlF{'x, 2sk 2S 2S -3+~/2 
(2~.C)I/2 t - x , ~ ) + F ( y ,  2s, (2)3r)1/2 Fy,~)](2)3r)  L \  

(E.15) 
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A singularity can only result from the r integration. It only appears  for 
d~>6. 

The t reatment  of the next term is analogous. The most  divergent term 
contains 

(Dik(r) + D it(O)) -2 + ~/~_ 

Divergencies only appear  for d>~ 8. 
The last term finally contains 

It diverges only for d>~ 10. 

(Dik(Z) + Djt(r ' ))  -3 +,/2 

A P P E N D I X  F. T H E  e POLES OF ~i. , ( i , j ,  q, t) 

In the expression (6.6) there are three terms to be analyzed. The first 
one is 

Is ( q~-~Uk,,(O,O, t)z ) 
Set---- dskds, ,Isk-sml -'lIE exp 41s~-s , , , I  - 1  

= dsk dx - -  Ixl . . . .  ,//2 N0.k~k+.,./t,l(0, 0, t) z" (F . I )  
- - S k  n = 1 I I !  

�9 r zl ,  r2) can be written as 

~,'ikm(0, z l, r 2 ) =  bi(k, m, r j ) - b j ( k ,  m, r2) (F.2) 

with 

For  r -=0  

bi(k, m, r) = Dik(r) -- Dim(r) 

bi(k, m, O)= Isi-  sk l - Is , -  s.,I : + ~ ( s ~ -  sm) (F.3) 

For  r ~ 0  one derives by means of (A.28), (A.33), (A.39), and (A.24), that  

bi(k, m, r) 
(2pr)~/2 l y r - [ y  +y2l  

+ ~, [g (y+v l t ) - -g (Y+y2+v/ t )  
v =  - o z ~ ,  

+ g(z + v/t) --g(z --Y2 + v/t)] 
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[ f ( y  + v/z) - - f ( y  + Y2 + v/z) + f ( z  + v/z) - - f (z  --Y2 + v/z)] 
v =  - - c O  

=Y2 ~. [--erf(y+v/z)+erf(z+v/z)]+(P(y~) 
v ~ - - o 0  

ODik('C) 
=Y2 5Sk + (9(y~_) (F.4) 

with 

si -- sk Sk -- S., Si + Sk 2S 
y=(2~z.)l/2, y2=(2)3.C)1/2 , Z=(2)3z.)l/2, /z-(2~z)l/2 (F.5) 

bi(k, m, r)/(2~r) ]/2 is expandable in Y2 to all orders, because 

f ( x  + y2)=f (x )  + y2er fx  + n=2 ~ (--y2)2Hn-2(x)-~n! e-~-' (F.6) 

with the Hermitian polynomials H,(x). 
For the present calculation it makes no difference whether b~(k, m, r) 

is assumed to be expandable in ( sk - s , , )  or whether actually 
bi(k, m, r)/(2~r) ]/2 is expandable in Y2. The distinction, however, becomes 
crucial in higher orders of perturbation theory. In any case we conclude 
that NO.k(k+.,./t,.l(O,O,t)=O(X). Thus in oQr (F.1), only the n = l  term 
contributes a singularity. It is 

r rS_sk q2 
d,  = [ 1 + e(~)] j, ask J ax-~ Ixl'-"/2 

0 - - s k  

x {'Si--Sk--XIx--ISi--Sk' ODyk(t)Os k [ 

1 + O(e) S~/2q: risk 
\ ask / 

The following identity can be derived from (A.26) 
relations of sin and cos: 

x 2 

(F.7) 

and orthogonality 

~o~ (O(Dik(~)-2DJk(T'))) 2 4Du(Irl + 1~'I)--2D.(2~)--2D~.(2r') (F.8) dSk \ Osk ' = 

Accordingly, ~r becomes 

l + (9(e) ~/, , 
- - -  S -q-[4Du(t) - 2D~(2t)] (F.9) g 
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The second expression to be analyzed in (6.6) is 

s , & 
~ = fo dsk dsm lsk- s,,I -*2 Io d r ~ e x p  

qZNO.k,,(O, r, t--r) 2 
4 ISk - s.,I 

, s  , s - , ~  , ~o ( q ~ , ~ . + ~  
= 2  J, dSk J dx f dr V 1_ ~,-gJ ixl.+,_.~ 

o -~k Jo ."20 n! 

x (Nr +"/~-')~ ' r '  t - - r ) )  2"§ ONuk~*+x/z'-)(O'r'x at t - r )  (F.IO) 

The discussion of &Uk,,(0, r~, r2) applies here again. Only the n = 0  term 
contributes a singularity and 

~r = [ 1 + (.0(e) ] -~- dsk dx drlxl '-el2 
- -  S k  

O(b,(k,k+x/12, r)-bj(k,k+x/12, t - r ) )  "- 
x ~  x 

s , a(a(D~e(r)_Dja(t_r)))2 
_1 +Cg(e)e S~/'-q2 ~s dsk fs dr ot ask (F.11) 

Insertion of (F.8) and partial integrations in time yield 

1 + (.0(e) ( D o t  (t) 2Dj).(2t)) sr ~ S"/'-q 2 4t c3 (F.12) 

The last term to be discussed in (6.6) is 

S I d~r =j" ~ dskdSlq2~ drdr' O(t--r--r')Dkt(T) -3+~/2 

x3Djk(Z') 3Du(t--r--r') ~ 2n+ 1 (q2~vkt(r, r', t - - r ' )2)"  
Or' 0 ( t - r - - r ' )  , =o - - - T  \ - ~ )  (F.13) 

where again th~ last exponential has been expanded. Singularities here 
come from DkAr ) and more specifically from factors of (27)r) u2, which can 
be extracted from Dkl(r) similarity as, e.g., in (B.4). Then Sk- St again has 
to be rescaled as y = (Sk--St)/(2~Z) I/2. In an argument similar to (E.6) one 
can convince oneself, that ~Ukt(r, r', t--z')=d)((2~r)l/2). Therefore again 
only the n = 0 term contributes a singularity: 
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d.,(1 + co(e)) 

=q2 f :  dskdst~j dr' f j-~'dr 

x Dkt(r)-3+~/2 0D;k(r') ODu(t - r - r') 
Or' O( t - r-- z') 

Z~k 2S ,~-3 +~/,- 
x F y, (2)%), a t-y, ~ )  

ODjk(r') OD~t k +.,,~z~,1,/.,/i,_1( t -- ~ -- r ') 
x - -  

Or' 0 ( t - r - r ' )  

4I + 
- (min {S-', 2ft} )./4 q~ 

s l" d , 0D;k(r') OD~(t--r') 
x fs dsk j ~ r ~ ~t-_~-r~ (F.14) 

From the representation (A.26) of D~(t) one derives that 

i:dsk 0Djk(r') OOik(r) , , ,ODi;( I r l+lr ' l )  
Or' Or sgn(r) sgnt r j ~ ~ + ]-r;]-) (F.15) 

Insertion into (F.14) finally yields 

- -  " ~ ODu(t) (F.16) d a-4I+~~ Ot 

Insertion of these identities into (6.6) finally results in 

(-, + .  ' )  
I ~ (rain{ S 2, (2~t)~/z} )c/4 _{_ C(~) 

+ .] 
0In t q2D~ (F.17) 
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